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This paper reports our efforts to address the grand challenge of the Digital Earth
vision in terms of intelligent data discovery from vast quantities of geo-referenced
data. We propose an algorithm combining LSA and a Two-Tier Ranking
(LSATTR) algorithm based on revised cosine similarity to build a more efficient
search engine � Semantic Indexing and Ranking (SIR) � for a semantic-enabled,
more effective data discovery. In addition to its ability to handle subject-based
search, we propose a mechanism to combine geospatial taxonomy and Yahoo!
GeoPlanet for automatic identification of location information from a spatial
query and automatic filtering of datasets that are not spatially related. The
metadata set, in the format of ISO19115, from NASA’s SEDAC (Socio-Economic
Data Application Center) is used as the corpus of SIR. Results show that our
semantic search engine SIR built on LSATTR methods outperforms existing
keyword-matching techniques, such as Lucene, in terms of both recall and
precision. Moreover, the semantic associations among all existing words in the
corpus are discovered. These associations provide substantial support for
automating the population of spatial ontologies. We expect this work to support
the operationalization of the Digital Earth vision by advancing the semantic-
based geospatial data discovery.

Keywords: ontology; geospatial semantics; search engine; Digital Earth;
similarity; search effectiveness

1. Introduction

Nowadays, geospatial information has been extensively used to support a variety of

physical-science and social-science studies, such as natural disaster prediction

(Li et al. 2009), emergency response (Rauschert et al. 2002), and urban economics

studies (Anas and Liu 2007). In the past decades, billions of gigabytes of geospatial

data have been produced and made available to the public by government agencies

and other stakeholders from multiple Earth-orbit missions, ground survey, and in

situ measurements. The large volume of data provides science and applied

researchers with a valuable resource. To enable the seamless access and visualization

of geo-referenced data, the former Vice President of the US Al Gore envisaged a
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virtual globe � the Digital Earth � as ‘a new wave of technological innovation that

allows us to capture, store, process and display an unprecedented amount of

information about our planet and a wide variety of environmental and cultural

phenomena’ (Gore 1998). Ten years later, a number of advanced techniques, such as

geobrowsing, distributed geographic information processing (DGIP, Yang et al.

2008), and volunteered geographic information (VGI; Goodchild 2007), have been

developed to operationalize the Digital Earth concept. However, as a comprehensive
goal, the ‘Digital Earth’ is still facing challenging problems (Xu 1999, Craglia et al.

2008). One grand challenge is how to provide an intelligent mechanism to assist users

of Digital Earth systems to readily discover, search, and access useful science content

from multiple sources. In the position paper from the Vespucci Initiative for the

Advancement of Geographic Information Science, Craglia et al. (2008) highlighted

the importance of establishing ‘a dynamic information system to provide reliable,

accurate, timely and openly accessible information’ for building the next-generation

Digital Earth. In 2010, the workshop ‘Towards Digital Earth: Search, Discover and

Share Geospatial Data 2010’ (http://ceur-ws.org/Vol-640/) was held at the Future

Internet Symposium and discussed the application of state-of-the-art information

technology to enable intelligent discovery of geospatial data. Although several efforts

have been made to promote the scientific discovery process, such as establishing data

application centers and developing Web catalogs (Li et al. 2010) with search

capabilities, in reality, scientists are still limited to the use of datasets that are familiar

to them (Li et al. 2011). These efforts often have little knowledge of the existence of

datasets that could be a better fit for their model or application (Gray et al. 2005,
Singh 2010, Tisthammer 2010) due to the inefficiency of current geospatial search

engines. This deficiency brings great challenges to the information-retrieval commu-

nity to develop more effective mechanisms for intelligent geospatial data discovery

and a semantic search platform to support the realization of the Digital Earth vision

(Gore 1998, Li et al. 2008a, 2008b).

There are two factors that influence the discoverability of a geospatial search

engine in the digitized world: accessibility and effectiveness. Accessibility measures

whether all existing geospatial data and services can be accessed by as many users as

possible; in other words, it involves the process of building the corpus which provides

the most up-to-date data. Effectiveness measures whether a search engine is able to

find all relevant information by scanning the corpus. One way to improve

accessibility is to build a comprehensive corpus containing all available datasets

dispersed on the Internet. For example, NASA has built several distributed,

discipline-specific active archive centers (DAACs) for scientific modeling and

analysis. NASA’s Global Change Master Directory (GCMD) and the US Govern-

ment’s Geospatial One Stop (GOS) provide public gateways and catalogs to facilitate
the collection and access of geospatial data. Li et al. (2010) developed an active

crawler to automatically collect the distributed geospatial services that exist on

the Web and have not yet been published, and to incorporate them into the

aforementioned catalogs to extend the geospatial data corpus. These works have

greatly improved the accessibility of geospatial data. However, in terms of improving

the effectiveness of a search engine, almost all of the existing geospatial catalogs and

Web portals use Lucene, a full-text keyword-matching technique (Hatcher and

Gospodnetic 2004). The datasets that are semantically related to a user’s query but

described differently from the query keyword will be considered irrelevant and

2 W. Li et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
Sa

nt
a 

B
ar

ba
ra

] 
at

 1
0:

40
 1

0 
A

pr
il 

20
12

 

http://ceur-ws.org/Vol-640/


excluded from the search results. Hence, improving the effectiveness of a geospatial

search engine and making available datasets reachable by scientists is becoming even

more significant.

Recently, the emerging semantic technologies are attracting the attention of
researchers, who are exploring how to utilize such technology to improve search

effectiveness. One direction of the efforts is to incorporate domain ontologies to

identify associations and concepts (such as polyseme, synonym) related to a query,

recommending a list of related search terms for users to refine their search. These

works include Virtual Solar Terrestrial Observatory (VSTO) (Fox et al. 2009),

Geosciences Network (GEON) (Bowers et al. 2004), Linked Environments for

Atmospheric Discovery (LEAD) (Droegemeier et al. 2005), and Noesis (Movva et al.

2008). These solutions rely heavily on the logical representation in the ontology,
which is usually developed by humans. The issue is that the words used for indexing a

document are often different from those in the pre-defined ontologies. Moreover,

different people with different knowledge sets tend to have different perspectives on

the categorization of terms and their linkages and relations. This would cause

heterogeneous representations and conflicting statements, and eventually influence

the effectiveness of a search engine. To overcome this problem, in this paper we

propose to use an analytical and human-independent method � latent semantic

analysis (Dumais 2004) � which has rarely been applied to the retrieval of geographic
data. By applying latent semantic analysis, the semantic structure of documents in

the corpus can be discovered and the latent semantics between the occurrences of

patterns of words, and clues to the likely occurrence of others, will also be discovered.

In this way, even the words with no occurrence in a document will be given weights

indicating the correlation between the words and the document.

Latent semantic analysis enables the discovery of more semantically relevant

datasets. Meanwhile, these discovered dataset need to be ranked so that the most

relevant results will always appear on top. Therefore, we also propose a ranking
model based on revised cosine similarity to filter out documents that are not closely

related in order to improve the effectiveness of geographic data retrieval. The

geospatial metadata sets from the NASA’s SEDAC (Socio-Economic Data Applica-

tion Center) are used as our test corpus in this study.

2. Background and limitation of existing methods

Two criteria are always used to measure the effectiveness of an information-retrieval
system: precision and recall. Precision is the ratio between the number of relevant

answers retrieved from a search and the total number of answers retrieved. Recall is

the ratio of the number of relevant answers retrieved from a search to the total number

of relevant answers within the corpus. LSA can improve the recall rate and a good

ranking algorithm can improve the precision of an information-retrieval system.

LSA, also known as LSI (Latent Semantic Indexing), was first introduced by

Deerwester (Deerwester et al. 1990) as a technique to discover the existence of latent

structure in the pattern of word usage across documents. It is a variant of the vector
space model that uses Singular Vector Decomposition (SVD) and low-rank

approximation to enable information retrieval in a reduced-dimensional space of

the corpus. The LSA technique has proven to be a valuable analysis tool and has

been widely used in information retrieval (Dumais 2004, Gabrilovich and

International Journal of Digital Earth 3
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Markovitch 2009). In addition, several extensions, such as probabilistic LSA

(Park and Ramamohanarao 2009), have been proposed to better understand why

LSI works. In this paper, we combine standard LSA with stemming and reversed

index techniques to enhance semantic association detection, in order to improve the
recall aspect of retrieval effectiveness of geographic data.

Cosine similarity is one of the most popular methods used for relevancy ranking

based on document similarity theory. It measures the cosine of the angle between the

query vector and the document vectors. When the angle is 0, the resulting cosine

function equals 1, meaning that the document being measured is the most relevant to

the query. Mathematically, the similarity can be represented as:

simðX ;YÞ ¼

Pn

i¼1

Xi � YiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

X 2
i

s ffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

Y 2
i

s ; (1)

where X is the query vector and Y is the document vector. Cosine similarity supports

partial keyword matching and is able to reflect the relevancy between the query and

documents on a continuous basis. This clear and simple linear-algebra-based model

has a rigorous mathematical foundation. Due to these advantages, the technique has

been adopted by a number of well-known search engines, such as Apache Lucene.

However, it has also several limitations. For example, the similarity values of long
documents can be misleading due to a small scalar product (small value in the

numerator) and a large dimensionality (large value in the denominator). Meanwhile,

the angle of two vectors is just a relative measure; it ignores the distance between the

vectors. This relative measure will result in a false negative match. To overcome the

previous problems, we propose a Two-Tier Ranking model based on revised cosine

similarity to improve the precision in the retrieval process.

In the next section, the proposed models and system workflow will be introduced.

3. Building an effective platform for retrieving geospatial data

3.1. Pre-processing

To build a search engine for geospatial data retrieval, indexing all the metadata
documents in the corpus is an essential step, because indexing optimizes the speed

and performance in finding relevant documents for a search query (Gulli and

Signorini 2005). The product of indexing is an ‘inverted index’: the keys are all

existing keywords in the corpus and the values of each key are documents containing

the occurrence of the specific keyword. The purpose of building an inverted index is

to enable the quick location of relevant documents once a query is given. LSI will be

performed on top of the inverted index to discover the latent associations between

keywords and documents such that even if a keyword does not appear in a document
but is detected by semantic analysis as related, the weight of the keyword in the

document will be positive instead of 0.

The metadata records in the corpus are encoded in ISO19115 (2003) and need to be

preprocessed before indexing for the following reasons. First, there are on average 600

metadata tags in each metadata record and most of the tags are shared across the

4 W. Li et al.
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corpus. If the tags are to be indexed, the similarity among metadata records will be

increased due to such high co-occurrences. Although we adopted some techniques to

reduce the influence of common terms shared by documents, the indexing time and

storage are wasted. Second, traditional indexing techniques conduct full-text index for

each document in a corpus. However, this is not necessary when indexing geospatial

metadata because a substantial amount of information (such as ‘ResponsibilityParty’

or ‘MetadataStandardName’) does not describe the actual content. Therefore, the

original metadata records were parsed, and only ‘Title’, ‘Abstract’, ‘Science Keyword’,

‘GMCD Keyword’, ‘Location Keyword’, and ‘Lineage’ were extracted from each

metadata record. New text files matching the original metadata documents were

generated by streaming out the useful information. We tested in the experiments

whether the modified system still maintains high precision and recall rates.

Figure 1 demonstrates the workflow of the search engine, with three phases

included: pre-process, indexing, and ranking. The uppermost box shows the pre-

processing of the metadata documents discussed previously. Once new text files are

generated, the system will scan each text file, extract all the words (we also call them

terms), and count the occurrence of these words throughout the whole corpus. This

process will generate the ‘Word-Frequency List.’ During the generation, frequently

used words such as ‘is’, ‘the’, also known as stop words, were eliminated from the

statistics to save disk space. The 1000 most frequent used words reported by Fry and

Kress (2006) were used as the vocabulary to filter the stop words.

Another strategy used to improve the retrieval is stemming, which reduces all

words with the same morphological root to a common form. For example,

‘Antarctica’, ‘Antarctic’ and ‘Antarctic’s’ would all be converted to their root form,

‘antarct’. Maximizing the usefulness of a subject word keeps the significance of the

words in a corpus. Lovin’s stemming algorithm (Lovins 1968) was adopted in this

                                                                              Preprocess 

                                                                           

Remove
Stopping Words 

Stemming 

Read document in 
corpus one by one

GCMD Metadata 
Corpus

Parse and extract key 
metadata fields 

Store information into 
database 

Reconstruct metadata 
files with selected 

fields

Indexing 
Word-Frequency 

List
Word-Document

Occurrence Matrix

TF-IDF
Matrix

SVG
Decomposition

Lower-Rank
Estimation LSI

Ranking 
q: Query 
d: Metadata Document 
t: Term 

Transformed
Term-Document

Matrix

Transformed
Term-Term

Matrix

Rank (q,d) by 
revised Cosine 

Similarity 

Top N most 
similar (t,t) 

pairs 

Figure 1. Workflow of the retrieval system for geographical data.
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study. The algorithm proposes a list of recoding rules to reduce a word’s derivational

and inflectional suffixes. But sometimes exceptions occur, for example, ‘sediment’

was stemmed to ‘sedim’ and ‘sedimental’ was stemmed to ‘sediment’ because the

algorithm is not iterative. Thus after the generation of the word-frequency list, the
frequencies of words with same root, for example, the substring case, were combined.

3.2. Latent semantic indexing

The term-document occurrence matrix A is the input for LSA. As Figure 2 shows,

the rows (unique words) and columns (documents) are all of the metadata records in

the corpus. The value in cell (i, j) is the number of occurrences of word i in document

j, where i 2 ½1;m�; j 2 ½1; n�. The total of each row equals the total frequency of word

occurrence in the corpus. The total of each column is the length in words of a
metadata document.

In previous studies, the earlier raw matrix was used directly for decomposition in

LSI. However, we argue that the cell values indicating the importance of words

(currently by the number of occurrences in a document) are biased by the length of

the metadata documents and the number of documents in which a keyword occurs.

For example, a long document will have a better chance to contain more instances of

a given word; and if a word occurs in most or all of the documents in the corpus, it

should have less importance. For this reason, we adopted the Term Frequency-
Inverted Document Frequency (TF-IDF) to adjust the weight of words (terms) in the

Term-Document matrix.

tfi;j ¼
countðwordi; djÞP

k

countðwordk; djÞ
(2)

idfi ¼

P
j

djP
j

occurrenceðwordi; djÞ
(3)

tf � idfi;j ¼ tfi;j � idfi; (4)

 d1 d1 .. .. .. dn

k1

k2

.       

.       

km

Figure 2. Structure of term-document matrix A.
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where i and k are words index (row index), j is the document index (column index);

count (wordk, dj) is the number of times that wordk occurs in document dj.

occurrence(wordi, dj) is a binary function: if wordi occurs in document dj, the function

returns 1; otherwise, it returns 0. tfi,j adjusts the weight of wordi in dj by the length of

dj; idfi adjusts the weight of wordi by its co-occurrences across the corpus. tf�idfi,j is the

product of tfi,j and idfi. This factor is applied to the whole term-document matrix A to

obtain A?.
Once the input matrix is prepared, the LSI can be computed. The foundation of

LSI is Singular Value Decomposition (SVD), by which the matrix A is decomposed

into three matrices: (1) a term-by-concept matrix W (dimensions: m�r) describing

the original column vector as an orthogonal unit vector; (2) a concept-by-document

matrix P (dimensions: r�n) describing the original row vector as an orthogonal unit
vector; and (3) a diagonal matrix S (dimensions: r�r) containing the scale values, as

Equation (5) shows.

A0 ¼ WSP; (5)

in which WWT�I and for any column vector Wi and Wj, where i, j � [1,r]

WiWj

�� �� ¼ 0; when i 6¼ j (6)

WiWj

�� �� ¼ 1; when i ¼ j (7)

PPT�I and for any row vector Pi and Pj, where i, j � [1,r]

PiPj

�� �� ¼ 0; when i 6¼ j (8)

PiPj

�� �� ¼ 1; when i ¼ j (9)

S is a diagonal matrix, namely Si,j�0, where i"j and i, j � [1,r]. In addition, S

satisfies

Si;i � Sj;j; for 8i 
 j

The Singular Value Decomposition makes the reduced dimension or lower-rank

estimation of A? possible. By retaining the largest k-dimensional scale values in the

matrix S and setting the remaining scale values to 0, and then combining the three

matrices by matrix multiplication, the term-document matrix A? can be represented
in a reduced LSI space by ~A0. The value of k is between [1,r]; when k�l, the

estimated matrix ~A0 is generated using only the largest scale value in the LSI space;

and when k�r, the estimated matrix ~A0 equals to A?. An important consequence of

this lower-rank estimation is that the words are no longer independent in the LSI

concept space (Dumais 2004), while they are orthogonal and independent in the

original term space. In traditional information retrieval, each document vector is

represented in the term space. For example, ‘census’ and ‘population’ will be

considered orthogonal and the correlation between them is 0. Therefore, when a
query contains only ‘population’, the document containing ‘census’ will not be

returned although they are related in meaning. However, by the lower-rank

estimation, all terms and documents are represented in the LSI space, so terms are

no longer orthogonal and the locations of the term vectors reflect their correlations

in terms of their usage in the corpus.

International Journal of Digital Earth 7

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
Sa

nt
a 

B
ar

ba
ra

] 
at

 1
0:

40
 1

0 
A

pr
il 

20
12

 



3.3. Indexing of location information aided by the GCMD location taxonomy

There are two primary ways for conventional spatial search engines to handle

location information. One method, typified by the Global Earth Observation System

of Systems (GEOSS) Clearinghouse metadata search engine (http://clearinghouse.

cisc.gmu.edu/geonetwork/srv/en/main.home), considers the location information as a

spatial constraint. Although some basic geocoding service is provided, for most

spatial queries, users still need to provide the reference of geographic extent by

drawing a bounding box on a map or typing in the geographic coordinates. This

common search mechanism, requiring users to be familiar with the geography of

regions of interest, limits the flexibility and usability of spatial search engines, and

restrains the Digital Earth user community, which includes ‘all the world’s citizens’ as

stated by Gore (1998). Another type of search engine considers the query place name

in the same way as any other keyword and will retrieve datasets that contain the

specified name in the metadata description (Jones et al. 2004). However, without an

effective way of recognizing the presence of place names in a query expression and a

mechanism to annotate the geographic extent of a dataset, it is still difficult for a

spatial search engine to achieve satisfactory performance.
To overcome the earlier limitations, a geospatial taxonomy � GCMD location

keyword � was introduced in the semantic indexing to guide the search related

to location. The GCMD location keyword has a six-tier hierarchy:

Category �Type �Sub-Region1 �Sub-Region2 �Sub-Region3 �Location. The

places are categorized into six classes according to their locations in the space

(below, on, and above the surface of the Earth). The six classes, namely, ‘Continent’,

‘Geographic Region’, ‘Ocean’, ‘Solid Earth’, ‘Virtual Location’, and ’Space’ are

further classified by their sub-regions. Figure 3(a) and (b) shows the skeleton of the

GCMD location keyword structure. The nodes in gray are examples of locations with

full paths. For example, through the hierarchical definition, it can be derived that the

island Kiribati is located in the Central Pacific Ocean, which is part of the Pacific

Ocean, which is a sub-region of Ocean.

To make use of this spatial taxonomy, each individual metadata record annotated

the locations covered by the dataset using the metadata tag Bgmd:keyword�.

Figure 4 shows a fragment of location keywords being annotated in the ISO

metadata entitled ‘IPCC IS92 Emissions Scenarios’. There are in total 476 locations

encoded in this metadata and more than 2000 keywords are contained on the paths

of the location classification tree. These location keywords were extracted during

metadata parsing and included in the latent semantic indexing discussed in the

previous section. The introduction of indexing locational information has the

following advantages. (1) The association of science keywords will be emphasized by

the adoption of a spatial taxonomy. An intuitive example for explaining the

phenomenon is when two datasets have overlaps in the regions they cover, they

would share more location keywords along the paths of hierarchical location

annotation. These co-occurred keywords will certainly increase the relatedness of

other science keywords being indexed in the metadata documents by the essence of

LSI. This finding could also be justified by the First Law of Geography

(Tobler 1970), which indicates that geographically closer things are more related

than more distant entities. (2) Search engines adopting this spatial taxonomy would

better handle spatial queries with locational information as keywords. With the

8 W. Li et al.
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informative annotations of locational information in the metadata documents, the

possibility of retrieving spatially matched datasets will be greatly increased.

Besides being used to annotate the geographic regions that a dataset covers in its

metadata, the GCMD location taxonomy is also utilized for automatic place name

detection from spatial queries by combing with Yahoo! GeoPlanet. As an emerging

Internet Location Platform, Yahoo! GeoPlanet provides a series of Application

Figure 3. Fragment of GCMD geospatial taxonomy: (a) hierarchical classification of

continent; (b) hierarchical classification of geographic region, ocean, atmosphere, and space.

International Journal of Digital Earth 9
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Programming Interface (APIs) to traverse the global spatial hierarchy and geo-code

the places (http://developer.yahoo.com/geo/geoplanet/data/). Different from another

popular geocoding service, GeoNames (http://www.geonames.org/), GeoPlanet

provides a bounding box of a region in addition to the center coordinates provided

by GeoNames. This feature enables a spatial filtering function: (1) detecting the place

name from spatial queries; (2) geocoding: converting the place name to a bounding

box; and (3) comparing the queried region with the geo-extent provided by the
dataset. The implementation details are discussed in Section 4.3 and associated

experimental results will be discussed as well.

3.4. Two-Tier Ranking by revised cosine similarity

The beauty of LSI lies in its ability to uncover semantically related documents. Using

the estimated term-document matrix ~A0 obtained in the previous section, more

related documents can be found once a query is given (here the query is represented
by keywords in a vector). However, not only do all relevant documents need to be

discovered, but also the most relevant documents need to be on top of the returned

results because search users will lose interest after checking the first few results.

Therefore, a ranking algorithm becomes important to the data retrieval process. As

discussed in Section 2, the most commonly used method is cosine similarity, which

measures the angle between the query vector (such as Q1 in Figure 5) and document

vectors (such as D1 and D2 in Figure 5).

As shown in the figure, the angles between D1 and Q1 and between D2 and Q1
are the same, therefore, they have the same rank in terms of relevance to Q1.

However, we observed that: (1) by applying LSI, the weights of terms with original

value 0 in a document will be always be reassigned to weights greater than zero and

mostly, the values are very small when no strong latent semantic relation is found.

Figure 4. GCMD location keywords annotated in the ISO metadata.
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Therefore, the closer vectors (such as Q1 and D2) should be more similar than those

further apart (such Q1 and D1). We call this a ‘distance’ requirement. (2) The

dimension of LSI is usually large (size equals the number of terms in the corpus),

while the number of keywords given by users in a query is usually less than eight

(Hitwise 2011). So similarity values may be misleading due to a small scalar product

(small value in the numerator) and a large dimensionality (large value in the
denominator) if weights in every dimension of LSI are used. We call this a

‘dimension’ requirement.

To satisfy these requirements, we propose a new rank method to measure the

similarity between a query vector X and a document vector Y:

simðX ;YÞ ¼

Pn

i¼1

Xi � YiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

Xi � Yið Þ2

s ; (10)

in which n equals the number of query keywords instead of the total number of words

in the corpus. This strategy greatly helps to remove the bias caused by using the
vector formed by the complete keyword list. In addition, Equation (10) considers not

only the angle but also the separation between vectors, so the requirements on

’distance’ and ‘dimension’ are both satisfied. This will be the tier-1st ranking.

Meanwhile, the ranking given by Equation (10) does not guarantee that documents

with full matching will be measured as more relevant to the query than those with

partial hits. So we propose the tier-2nd ranking, which is to rank on the result

obtained from Equation (10) by the number of hits in descending order. In this way,

documents containing all j query keywords will still be ranked by Equation (10),
while those documents containing t(tBj) query keywords will be ranked lower than

the documents containing all j query keywords.

4. Experimental results

In the corpus, there are in total 200,000 geospatial metadata records from GCMD.

These metadata are provided by a number of organizations, including SEDAC,

NSIDC (National Snow and Ice Data Center), and ACCDC (Atlantic Canada

Conservation Data Center). In the experiments in the current phase, we selected the

D2

Concept

Q1

D1

Figure 5. Query and document vectors in LSI concept space.
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SEDAC subset (145 documents) to be our selected test corpus for the following

reasons: first, through some initial experiments, we found that the clustering pattern

of word usages and metadata documents has intra-institutional characteristics.

Second, it is easy to examine the actual number of documents related to a given
query from a small corpus. So it will be easier to validate the effectiveness of the

proposed retrieval methods.

4.1. Precision and recall

Two criteria are used to evaluate the effectiveness of the system: recall and precision.

Precision is the ratio between the number of relevant answers retrieved from a search

and the total number of answers retrieved by that search. If all the retrieved answers

are relevant to the search, the precision reaches its highest peak, which is one. If none

of the retrieved answers are relevant, the precision reaches its lowest value, zero.

Mathematically, precision can be defined as follows:

Precision ¼ fall relevant recordsg \ fall retrieved recordsgj j
fall retrieved recordsg

(11)

Recall is the ratio between the number of the relevant answers retrieved from a search

and the total number of relevant answers within the corpus. If all the relevant

answers are retrieved by the search algorithm, the recall rate is one. If none of the

relevant answers can be retrieved, the recall rate is zero.

Recall ¼ fall relevant recordsg \ fall retrieved recordsgj j
fall relevant recordsgj j

(12)

Eight queries, listed in Table 1, were conducted on the corpus. The precision and
recall rates of the eight queries from our proposed search engine SIR were compared

with those obtained from Geonetwork, one of the most popular metadata search

engines relying on Lucene.

For Q 1.1, by typing ‘natural disaster death’, a user expects to retrieve death

statistics caused by natural disasters. We determine the relevance of a dataset to the

query by meanings instead of keyword occurrences. So even though a document

contains all of the aforementioned keywords, or the weights of the aforementioned

keywords that come up after conducting semantic analysis, the dataset is still
considered to be irrelevant if the subject is not directly related. Results show that

Geonetwork returns zero results on this query; in contrast, using our proposed

method, there are 29 results returned from SIR. The topics of the returned records

include global earthquake/flood/volcano/drought/landslide/cyclone mortality risks

and distributions, and the economic losses caused by these disasters. It is clear that

all these records are related to Q 1.1. Through examining the test corpus, we found

31 documents are relevant in total. Therefore, by applying Equations (11) and (12),

the precision of SIR reaches 100% and that of Geonetwork is 0%; the recall rate of
the SIR is 94%, while that of Geonetwork is still 0%. The reason for the significant

performance difference of the proposed method and Lucene-based searching is that

’mortality’ is relevant to the query word ‘death’, but it is not present in the metadata

document. The proposed method is able to detect this association while the pure full-

text indexing cannot.

12 W. Li et al.
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For Q 1.5 (global climate change pollution), a user expects to see the data indicating

the relation between climate change and pollution, such as the dataset showing the

climate change caused by air pollution. Using the proposed method, SIR returned 33

documents and Geonetwork only returned 6 documents. By examining the test corpus,

we found that 20 of the 33 records are relevant to the query. The extra records returned

by SIR are on the subjects of ‘Global Multi-hazard Total Economic Loss’, etc. In these

records, there are occurrences of words ‘environmental protection’, which is related to

‘pollution’. But because the subject is more on the loss estimation from ‘hazards’

instead of ‘pollution’, they are not considered relevant. Similarly, in the results

returned by SIR for Q 1.2, there is a record named ‘China Dimensions Data

Collection: Fundamental GIS: Digital Chart of China, 1:1M, Version 1’. The record is

about the environmental impact to humans, but the environmental impact is from

‘urbanization’ rather than ‘disaster’. As it is not directly relevant, this record is

considered irrelevant when measuring recall and precision.

Figure 6 shows the comparison of overall recall and precision rates for our SIR

search engine applying LSA and the Two-Tier Ranking (LSATTR) algorithms and

that for Lucene search in Geonetwork. We can tell that the recall rate by the LSATTR

method is much higher than using Lucene. Except for Q 1.1, which has the recall rate at

94%, all other queries have 100% recall rate. It means that all relevant records in the

corpus could be retrieved by the LSATTR. However, the LSATTR method also

returned datasets judged not closely relevant (as analyzed earlier) and this influenced

the precision rate. As shown in Figure 6(b), although Geonetwork returns fewer

records than SIR, all the records returned are relevant. Therefore, it maintains a higher

precision rate than our retrieval system. Note that precision rate is just a relative

measure; although it is a little higher when using Luence than using the LSATTR

method, our search engine SIR was still able to identify all records found by Lucene.

4.2. Detected word�word associations

In the test corpus, 2541 unique words were extracted (not including the stop words).

Besides using LSI to improve the retrieval effectiveness, the semantic associations

Table 1. Selected query for evaluating search effectiveness.

Query type Query Keyword

1 Q 1.1 Natural disaster death

Q 1.2 Disaster population impact

Q 1.3 Natural disaster damage

Q 1.4 Wildlife distributions by species

Q 1.5 Global climate change pollution

Q 1.6 China agriculture food sustainability

Q 1.7 Census housing condition

Q 1.8 Africa poverty statistics

2 Q 2.1 Colorado population

Q 2.2 California population dynamics in the United States

Q 2.3 Wild life habitat of Costa Rica

Q 2.4 China County level population data

Q 2.5 Puerto Rico census data

International Journal of Digital Earth 13
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between terms can also be found as a side product. In this case, there are more than

300,000 values indicating the association between term pairs. The square symmetric

matrix TT containing all the word�word dot products can be computed from W and

S � the component in Equation (5). According to Deerwester et al. (1990),

T T ¼ WS2W (13)

where T_T is the 2541*2541 matrix and T_T[i, j] represents the relatedness between
word i and word j.

Figure 6a. Recall comparison between proposed method and Geonetwork.

Figure 6b. precision comparison between proposed method and Geonetwork.
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The algorithm for detecting the semantic associations is as follows:

(1) Construct a hash table for all entries (terminologies) in the GCMD science

keyword taxonomy for quick lookup. The key of the hash table is a science
keyword, and the value is the cluster, e.g. Biosphere, that the keyword belongs

to. Without the hash table, we need to traverse all the trees in the taxonomy

forest to look up a term and it will be a very time-consuming task.

(2) Given a term, e.g. ‘Forest’, in the GCMD science keyword taxonomy, by

searching the T_T matrix, all related terms in the corpus could be returned in

descending order of relatedness.

(3) Determine whether each related term has an entry in the GCMD science

keyword taxonomy by looking it up in the hash table. Once a hit is found, the
association ‘hasRelatedCluster’ can be added automatically by a Jena (http://

incubator.apache.org/jena) operation. Note that the ‘Cluster’ will be replaced

by the name of a specific cluster that the related term belongs to. For

example, if the association between ‘Forest’ and ‘Flood’ was discovered from

the T_T matrix, then the relation will be defined as ‘hasRelatedEcosystem-

Term’ from ‘Forest’ to ‘Flood’.

(4) After the associated concepts were built from the previous procedure, the new

taxonomy needs to be evaluated by the domain experts to assure its accuracy.

Figure 7 shows the 16 words most related to ‘Forest’ obtained from T_T and

organized in the clusters of the GCMD science keyword taxonomy (Olsen et al.

2007). The different colors (in grayscale) indicate different clusters and the numbers

1�13 listed beside the nodes are the ranks of relatedness. From this figure, we can tell

that the most related words to ‘Forest’ are its ancestors, e.g. ‘Biosphere’, and its

siblings, such as ‘Grassland’. The relationships of words from other clusters to

‘Forest’ are also uncovered, as the dotted arrows show. For example, the relation
between ‘Forest’ and ‘Human Dimension’ and that between ‘Forest’ and ‘Terrestrial

Ecosystem’ (through its child node ‘Flood’) are discovered. The identification of

these relations provides a semi-automated way to associate semantically related

words in isolated clusters in the taxonomy together. Besides, in the current taxonomy,

there are no entries for words ‘timber’, ‘wildlife’, and ‘woodland’, which are also

considered to be related through the latent semantic analysis. Adding these

semantically related words and associations into the taxonomy would greatly enrich

its semantics toward generating a synthesized domain knowledge base.

4.3. Improvement of spatial search by geospatial taxonomy

Besides the advancement of subject-based search by the support of the proposed

indexing and ranking algorithm, we also utilized the GCMD location taxonomy to

improve the spatial search when a place name appears as part of a query. This

procedure includes the automatic detection of a place name in the query and a spatial

filter function to exclude datasets not spatially related. The following three-step
procedure describes the implementation details:

� Step 1: Link each region/place name encoded in the GCMD location

taxonomy to a bounding box. This linkage is automatically built by traversing

International Journal of Digital Earth 15
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the taxonomy tree and geolocating the place name on the current node using

GeoPlanet APIs. For example, to obtain the bounding box and centroid of

‘North America’, a HTTP request http://where.yahooapis.com/v1/places.q%
28%22north%20america%22%29?appid�{Ahe1C6HV34HLpJjFSX.svGthr7_

1Ddd207T_f37S7tsuL4VUms2VY1P1uiWyAjbsWg} could be constructed.

The coordinates of the southwest and northeast corners of the geographical

extent of the queried place could be extracted and encoded into the GCMD

location taxonomy.

� Step 2: Detect the existence of a place name in a query. Once a query is given,

all possible combinations of adjacent keywords can be obtained as the

potential place name strings. For a query containing n keywords, there will
be n(n�1)/2 possible combinations. Each keyword combination will be looked

up in the GCMD taxonomy to find a matching node. Once a matching node is

found, the geo-extent of the node (a place name) can be acquired. If more than

one place name is being detected and if their geo-extents have overlaps, the one

with smaller geo-extent will be used.

� Step 3: The ‘spatial filter’ function helps the SIR semantic search engine to

exclude the datasets that do not cover the area of interest given in a user’s

query. This filter is implemented by comparing the geo-extent covered by a
dataset and the requested geo-extent obtained from Step 2. If a dataset does

not cover the region of interest at all, it will be excluded from the result set.

That is, if the bounding boxes of the queried location and the geospatial

dataset have no overlap, the dataset will be filtered out.

Figure 7. Latent semantic association discovery.
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The introduction of spatial taxonomy-based location annotation, place name

detection, and spatial filter functions further improves the effectiveness of geospatial

search, especially the location-based search. To compare the performance of SIR

which adopts the proposed mechanism in dealing with spatial queries with

Geonetwork search, we used another set of queries (listed as Type II queries in

Table 1). Our focus is to examine both search engines in terms of their abilities to

automatically identify place names and perform the correct spatial filter function.

Therefore, in comparison to Type I queries, Type II queries have less complex

semantics but all contain place/region names as part of the queries. From the

experiments, very promising results were found. For instance, Query 2.1 and

Query 2.2 are to search for population-related datasets in different states: Colorado

and California. Query 2.2 includes more than one place name (‘California’ and

‘United States’). Based on the rule we set, ‘California’ has the smaller extent and

should be picked. These two queries were designed to test whether SIR can filter out

the population datasets covering only New Orleans, Texas, and Louisville instead of

the whole US region, given that there exist such datasets in the corpus whose titles

indicate that the whole US is being covered. For Query 2.1, only one record (about

‘USDA plant list’) is returned from Geonetwork and it is irrelevant. The reason why

this record is returned is that in the abstract of the metadata file, there are

occurrences of both ‘population’ and ‘Colorado’, but ‘population’ is in the context of

population interaction with species and ‘Colorado’ is the location of a research

center that maintains the plant dataset for USDA. For SIR, the top 20 metadata

records returned are all relevant and the location condition is satisfied by each of the

results, as well. For Query 2.2, Geonetwork returns six records (all about ‘China

Dimensions Data Collection’); however, neither the content nor the geospatial extent

of the results satisfies the query. Similar to Query 2.1, these six records were returned

only because there are matches of the queried keywords in the metadata documents.

As for SIR, for the top 20 datasets returned, all are relevant. Figure 8 (the prototype

graphic user interface [GUI] of SIR) shows the results for Query 2.2. In the result set,

we highlighted the metadata records with ‘(exclude)’ at the end of such records that

match the query in terms of topic but not the location condition. The purpose is to

demonstrate the effect of the spatial filter function. For example, the first record that

SIR returns is a population dataset of Mexico and is automatically filtered out by

SIR. For records 2, 3, 7, and 8, although the titles say ‘US population grids’, the

datasets only cover a few states in the southeast US, and are excluded as well.

Similarly, Record 12 is also excluded because its coverage is in Asia instead of

California, US. From the results, we also found that the records (e.g. 20, 21, 23)

which do not contain the exact keyword ‘Population’ but contain its synonym

‘Census’ also were ranked highly, although behind those containing ‘Population’.

This reflects the benefits of adopting latent semantic analysis and the proposed

ranking algorithm to discover relevant datasets even if only words of similar

meanings are used in the metadata. SIR also works well for other spatial queries from

the experiments. For example, for Query 2.3, Geonetwork returns zero records

because of no place name/subject matches in the metadata documents. In contrast,

the top 10 records returned from SIR are all closely relevant and the records that

were ranked lower are partially relevant. Other tests we conducted, e.g. Q 2.4 and Q

2.5, all returned satisfying results.
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5. Graphic user interface

Figure 8 demonstrates the prototype GUI to test the proposed methodology. It

contains the following components: (1) a corpus directory is used to designate what

datasets are used for Semantic Indexing and Ranking (SIR); (2) the textbox below it is

for entering query keywords. There are three modes for conducting the search: ‘Brute

force’, ‘TF*IDF’, and ‘LSI’. ‘Brute force’ will only match the query by counting the

occurrence of keywords in the metadata; ‘TF*IDF’ adjusts the importance of each

keyword in the documents and therefore improves similarity ranking from the ‘Brute

force’ method; ‘LSI’ uses our proposed method for semantically indexing on the words

that exist in the metadata documents, and will adjust the weight of other keywords

based on co-occurrences and relatedness across the entire corpus. In the experiments

discussed in Section 4, LSI mode was selected. (3) The buttons labeled 1�5 show the

procedure to generate the term-document matrix and to compute similarity among

terms and documents; (4) each tab, e.g. ‘List of words in corpus’ or ‘Query results’,

presents statistical information or the search results.

6. Conclusion and discussion

This paper discussed a combined LSATTR‘ algorithm to improve the effectiveness of

geographical data retrieval to address the grand challenge of the Digital Earth vision

Figure 8. Prototype GUI of SIR.

18 W. Li et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
Sa

nt
a 

B
ar

ba
ra

] 
at

 1
0:

40
 1

0 
A

pr
il 

20
12

 



in terms of intelligent data discovery from vast quantities of geo-referenced data.

Experiments show that a retrieval system implementing the proposed method

improved the retrieval of relevant documents significantly � for all eight sample

subject-based (Type I) queries, the recall rate almost reached 100%. Although the

precision is in some cases lower than the Lucene-based retrieval method, the system

guarantees that all the records returned by Lucene could be discovered by the

proposed retrieval system. Besides the capability of handling subject-based queries,

we also introduced the advanced mechanisms of automatic place-name detection and

spatial filtering to handle spatial queries with the assistance of the GCMD location

taxonomy. Applying the proposed methodology in geographical data retrieval has

the advantages of (1) discovering latent semantic associations between terms and

enabling fuzzy match (match based on meanings instead of appearances); (2) on-the-

fly query answering, because the time-consuming aspects � SVD of the process

mostly occurs at the pre-process phase; (3) effective identification of place name as

part of a spatial query for spatial filtering; (4) conducting subject-based and

location-based query simultaneously; (5) automated discovery of semantic linkage

among geospatial data resources to enrich the geospatial taxonomy.

There are several directions that might further improve the research. In the

current SIR system, the granularity of the latent semantic analysis is still a single

word. That is why the phrase ‘Terrestrial Ecosystem’ in Figure 7 has two rankings in

terms of its relatedness to the given word ‘Forest’. Sometimes, a phrase would have

stronger semantic meaning than the words in it considered separately. In the future,

we will extend the LSI to handle phrase-based latent semantic analysis by measuring

the occurrence/distance of words in a document and cross-matching the entries in

existing ontologies, such as SWEET (Raskin and Pan 2005). Second, the proposed

discovery mode is based on the assumption that the metadata documenting the

information of the actual dataset is accurate and complete. To match user queries

with data content requires a great amount of time for manual checking by humans

and yet is still a very challenging topic for machine processing. Therefore, the quality

of metadata from different providers would influence the discoverability of the

dataset even with a well-performing retrieval system. In the future, we will release

SIR as an open-source geospatial search engine and integrate the advanced

techniques into the current popular metadata search engine Geonetwork to benefit

the broader Digital Earth user community.
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