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Within a CyberGIS environment, the development of effective mechanisms to encode
metadata for spatial analytical methods and to track the provenance of operations is a
key requirement. Spatial weights are a fundamental element in a wide range of spatial
analysis methods that deal with testing for and estimating models with spatial auto-
correlation. They form the link between the data structure in a GIS and the spatial
analysis methods. Over time, the number of formats for spatial weights implemented in
software has proliferated, without any standard or easy interoperability. In this paper,
we propose a flexible format that provides a way to ensure interoperability within a
cyberinfrastructure environment. We illustrate the format with an application of a
spatial weights web service, which is part of an evolving spatial analytical workbench.
We describe an approach to embed provenance in spatial weights structures and
illustrate the performance of the web service by means of a number of small
experiments.

Keywords: CyberGIS; GIScience; spatial analysis; spatial weights; metadata;
provenance

1. Introduction

Cyberinfrastructure, or e-science, (as it is known in the United Kingdom) was outlined
prominently in the much-cited ‘Atkins’ blue-ribbon report of the US National Science
Foundation. It was envisaged as an encompassing computing framework for the integra-
tion of ‘enabling hardware, algorithms, software, communications, institutions and per-
sonnel’ (NSF 2003, p. 5). This has resulted in a renewed emphasis not only on developing
high performance computing (HPC) infrastructure, but also on enabling access to dis-
tributed data and sensor information, enhancing visualization and data analysis, and
facilitating the establishment of collaborative networks of scientists. Cyberinfrastructure
is thus viewed as an integrated end-to-end solution to support the study of complex
scientific problems in a collaborative fashion.

The geospatial sciences have embraced cyberinfrastructure (CI) as a means to leverage
existing capabilities in geoprocessing and spatial analysis and tackle a new class of
challenging scientific problems (Goodchild 2010). Efforts that extend cyberinfrastructure
frameworks to take into account the special characteristics of geospatial data (as well as
space–time data) are variously referred to as CyberGIS (Wang 2010), spatial cyberinfras-
tructure (Wright and Wang 2011) or geospatial cyberinfrastructure (Yang et al. 2010).
These terms encompass not only access to HPC (e.g., grid networks or cloud computing)

*Corresponding author. Email: luc.anselin@asu.edu

International Journal of Geographical Information Science, 2014
http://dx.doi.org/10.1080/13658816.2014.917313

© 2014 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

] 
at

 1
6:

24
 1

2 
N

ov
em

be
r 

20
14

 



but also the combination of distributed geospatial data (e.g., data repositories, sensor
networks) and distributed geoprocessing (e.g., spatial data manipulation, geovisualization,
pattern detection, process modeling) by means of software systems (the so-called mid-
dleware) that seamlessly integrate these resources (Wang et al. 2013, Li et al. 2014b).

Increasingly, advanced spatial analytical methods are becoming a more prominent
component of CyberGIS. For example, Anselin and Rey (2012) proposed the notion of a
spatial econometrics workbench as a framework for supporting spatial econometric
research in the cyberscience era (see also the overview in Anselin 2012). In this paper,
we extend this notion to encompass a wider range of techniques and refer to it as a spatial
analytical workbench, as an environment that supports a scientific workflow, in the sense
of a template of the sequence of tasks and the dependencies between them that are
required to accomplish a specific goal (Deelman et al. 2009, Chebotko et al. 2011). In
spatial analysis, a typical workflow consists of data pre-processing, data transformation
and data integration, visualization, exploration, model specification, estimation, diagnostic
testing, validation, and reporting. Within such a CyberGIS environment, the development
of effective mechanisms to encode metadata for spatial analytical methods and to track the
provenance of operations is a key requirement (e.g., Wang et al. 2008b, Yue et al. 2011,
Anselin 2012, Wen et al. 2013).

We focus more specifically on the role of spatial weights in a spatial analytical
CyberGIS. Spatial weights are a key component in a wide range of spatial analysis
methods that deal with testing for and estimating models with spatial autocorrelation
(e.g., Cliff and Ord 1973, 1981, Anselin 1988). As the formal representation of the spatial
arrangement of the observations, spatial weights form the link between the data structure
in a GIS and the operations associated with particular spatial analysis methods. Over time,
the number of formats for spatial weights implemented in GIS and spatial analytical
software has proliferated, without any standard or easy interoperability. For example, the
PySAL library for spatial analysis (Rey and Anselin 2007) supports no less than 11
different file formats for spatial weights (see http://pysal.org). The existence of multiple
incompatible file formats limits interoperability and forms an important impediment for
the incorporation of spatial autocorrelation analysis in a CyberGIS.

The objectives of this paper are twofold. First, we propose a new lightweight and
extensible means to encode spatial weights information that includes metadata and allows
effective handling of provenance. Second, we incorporate the new format into a spatial
weights web service as a component of the spatial analytical workbench and assess its
performance in a realistic setting, taking advantage of HPC infrastructure. In the remain-
der of the paper, we first outline our vision of the role of a spatial analytical workbench in
CyberGIS. This is followed by a taxonomy of spatial weights and their characteristics.
Next, we outline our proposed format for encoding spatial weights information and
illustrate this with an example. We also devote a section to the description of the delivery
of the spatial weights operations as a web service, followed by an extensive evaluation of
its performance. We close with some concluding remarks.

2. CyberGIS and the spatial analytical workbench

Our specific effort is part of an overall endeavor to integrate and sustain a core set of com-
poseable, interoperable, manageable and reusable CyberGIS software elements based on
community-driven open source strategies (Wang et al. 2013). In the geospatial arena,
some progress has been made toward implementing an operational cyberinfrastructure,
although the focus has tended to be on distributed geoprocessing (e.g., Yang et al. 2008,

2 L. Anselin et al.

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

] 
at

 1
6:

24
 1

2 
N

ov
em

be
r 

20
14

 

http://pysal.org


Yang and Raskin 2009, Li et al. 2010, Zhao et al. 2012) and proof of concept applications
that illustrate the use of middleware to access HPC infrastructure, such as grid or cloud
computing (e.g., Yan et al. 2007, Pallickara and Pierce 2008, Wang et al. 2008a, Wilkins-
Diehr et al. 2008, Zhang and Tsou 2009, Harris et al. 2010, Wang 2010, Xie et al. 2010,
Srinivas et al. 2011). To date, the integration of advanced spatial data analysis and
cyberinfrastructure is still in its infancy and an area of active research (Anselin and Rey
2012, Li et al. 2013).

Our particular approach toward developing a spatial analytical workbench consists of
leveraging the efforts behind the PySAL open source library for spatial analysis that is
written in the Python language (Rey and Anselin 2007). In addition to modules that deal
with fundamental operations behind any analysis (e.g., file input-output, geocomputation,
basic spatial data structures), PySAL contains specialized functionality for exploratory
spatial data analysis (e.g., global and local spatial autocorrelation statistics), the creation
and manipulation of spatial weights, indicators of spatial inequality, measures of spatial
dynamics, point patterns analysis on networks, regionalization, and spatial regression/
spatial econometrics (see pysal.org for an extensive overview). The first official release of
the PySAL library occurred in August, 2010. The development team adheres to a strict 6-
month release schedule, with the latest stable version (Version 1.7) made available in
January 2014. During the brief period since its first release, PySAL has gained a growing
adoption in the open source GIS/spatial analysis world. This culminated in its inclusion in
the Anaconda distribution for Python visualization and data exploration from Continuum
Analytics, a highly regarded numerical toolbox in the scientific Python community (see
http://continuum.io/index).

Moving the PySAL functionality to a CyberGIS framework as a spatial analytical
workbench builds upon and leverages the current development efforts, but converts them
from a focus on a desktop environment to providing a collection of software components
delivered over the Internet. This adheres to the concept of ‘service-oriented science’,
consisting of distributed networks of interoperating services (Foster 2005). The services
can be combined in a scientific workflow to carry out a specific set of tasks. The core idea
is to deploy components of the PySAL library as specialized web services that adhere to
common and open standards. The workbench then becomes a gateway that provides
access to a collection of techniques, data sets, and simulation environments to support a
wide range of empirical applications.

In this process, we have to address two major challenges: the development of efficient
algorithms and enhancing interoperability among spatial analytical services. Since most
current spatial analytical and spatial econometric software is written for computer archi-
tectures that consist of a single CPU, it does not naturally take advantage of the high-
performance computing power contained in a cyberinfrastructure. Therefore, traditional
spatial analytical algorithms need to be reconceptualized to exploit multiprocessing. In
particular, the potential for vectorization and parallelization should be explored to improve
performance in a big data setting. An in-depth discussion of this topic is beyond the scope
of the current paper.1 Instead, we focus on the challenge of interoperability.

In order to ensure interoperability between spatial analytical modules in a CyberGIS
framework, it is necessary to focus on both the data component and the modeling
(analytical) component. For each of these, the lineage of initial sources and their char-
acteristics, manipulations and analytical operations needs to be recorded and made avail-
able to facilitate replication. Some early suggestions pertaining to GIS data provenance
were reported in Lanter (1991, 1993). Since then, various information models and
standards have been proposed to standardize the representation of data provenance in a

International Journal of Geographical Information Science 3

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

] 
at

 1
6:

24
 1

2 
N

ov
em

be
r 

20
14

 

http://continuum.io/index


geoprocessing workflow. In 1992, the Federal Information Processing Standards (FIPS)
program approved the Spatial Data Transfer Standard (SDTS), in which a lineage model is
considered a core component to validate the data quality and to ensure easy transfer of
distributed data across different GIS systems (Arctur et al. 1998). The International
Organization for Standardization (ISO) also defined a lineage model in its ISO
19115:2003 (ISO 2003) and ISO 19115–2:2009 (the extension of 19115 to handle gridded
and imagery data) (ISO 2009) metadata standards. This lineage model allows the record-
ing of descriptive provenance, including the data source as well as each processing step.
In the computer science community, the Open Provenance Model (OPM) was adopted
originally, but in recent years the World Wide Web Consortium (W3C) has led efforts to
develop a more flexible provenance ontology (PROV-O) to capture data provenance.
Building blocks of this framework include Agent, Activity, and Entity. These are defined
and encoded using semantic web languages to enable formal query about data trails (Lebo
et al. 2012, Li et al. 2013).

Besides representation, provenance-aware applications also need to ensure provenance
capture, management, and retrieval (Miles et al. 2007). Provenance management typically
involves the use of a database or a Resource Description Framework(RDF) triple store.
The retrieval of provenance data is through a SQL (Structured Query Language) or
SPARQL (Semantic Web Query Language) query in a Semantic Web environment. This
aspect of provenance has been investigated extensively, e.g., in Buneman et al. (2001),
Cui et al. (2000), Wang et al. (2008b), Chebotko et al. (2010). In contrast, the capture of
data provenance, especially the elements that are included in a geoprocessing workflow is
still new to the GIScience community. In part, this is due to the complexity of spatial
analysis and the requirements to generate, represent, and transfer the provenance in an
automatic manner. For example, Tilmes et al. (2013) develop a concept model to present
the content and provenance of the national climate assessment report developed by the US
Global Change Research Program. This provenance model, using W3C PROV, can be
classified as a post-event provenance since the provenance is captured after the assessment
on climate change is completed. Yue et al. (2011) develop formal mechanisms for sharing
existing data provenance through an extension of the Open Geospatial Consortium (OGC)
EbXML Registry Information Model (EbRIM). However, provenance capture is not
addressed in this framework. More recently, Di et al. (2013) presented a state-of-the-art
solution for capturing provenance while the data is being generated. The provenance,
encoded in ISO19115 lineage model, is dynamically recorded when a web service is
executed by a Business Process Execution Language (BPEL) engine.

In this paper, our focus is on developing metadata and provenance tracking for both
geospatial data and the analytical operations that are part of the spatial analytical work-
bench. We develop a provenance engine that is capable to parse and replicate a data set (in
this instance, a spatial weights matrix) based on the production process encoded in the
provenance metadata. Our objective is to develop a lightweight system that tracks all
operations in such a way that there is no ambiguity about the nature of the spatial weights
and to ensure full replicability.

3. Spatial weights

A spatial weights matrix, typically denoted by W, is a positive square matrix of dimension
equal to the size of the data set, i.e., n × n for a data set with n observations. Its non-zero
elements denote the existence of a neighbor relationship among spatial observations.
More formally, when observations i and j are defined as neighbors, then wi;j �0; where
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wi,j is the element in the ith row and jth column of the weights matrix. Non-neighbors
correspond to spatial weights elements wi;j ¼ 0: By convention, self-neighbor relations are
excluded, such that the diagonal elements of the weights matrix are zero, i.e., wi;i ¼ 0:
Higher order neighbors are derived in a recursive fashion, in that any neighbor of order k is a
first order neighbor to a neighbor of order k − 1, and not already a neighbor of a lower order.
This requires that redundancies and circular paths be removed in the construction of higher
order spatial weights (e.g., Blommestein and Koper 1992, Anselin and Smirnov 1996).

Whereas the formal expression of the weights is straightforward, the definition of a
neighbor relation is not. Different criteria may be used, some based on geographic
concepts, such as distance or contiguity, others have graph-theoretic origins, or derive
from social network and other more general concepts. At its core, the spatial weights
matrix is a representation of a graph, where the observations are nodes and the existence
of a neighbor relation is expressed as a link (Anselin and Smirnov 1996).

In addition, the simple binary neighbor relation is typically not what is used in spatial
analytical operations. Instead, various types of standardization or normalization can be
carried out. The most common of these is row-standardization, such that:

w�
i;j ¼

wi;j

�jwi;j
:

In other words, the weights are standardized such that they sum to 1 in each row. This
facilitates the computation of a spatially lagged variable as the weighted sum of the values
in neighboring locations (Anselin 1988). Other types of standardization have been
suggested in the literature as well, see, for example, Tiefelsdorf et al. (1999) and
Kelejian and Prucha (2010). In addition, in some contexts the value of the weights is
not the result of a standardization or transformation, but instead something with intrinsic
meaning, such as the weights based on notions of local clusters advanced by Aldstadt and
Getis (2006). For a recent review, see, e.g., Getis (2009).

In sum, there are three fundamental properties associated with any spatial weights
matrix:

● the initial data source with the location of observations (e.g., polygon data file,
point data file, data table)

● the type of neighbor relation (e.g., contiguity, distance band, network distance)
● transformation and standardization (e.g., row-standardization, higher order conti-

guity).

In order to ensure proper provenance tracking for spatial weights, these properties will
need to be contained in weights metadata. To date, this has only been the case to a very
limited extent.

In the early implementations of spatial analytical software (e.g., for the computation of
spatial autocorrelation coefficients), the spatial weights were constructed as full (dense)
matrices. In practice, however, a weights matrix is very sparse, holding only a few non-
zero elements in each row. Starting with SpaceStat Version 1.80 (Anselin 1995), two
sparse formats were introduced, GAL and GWT, that quickly gained acceptance and were
adopted in a range of other software implementations as well, most notably in GeoDa and
the R spdep package (see the discussion in Anselin et al. 2006, Bivand et al. 2008,
Anselin 2012). In addition to supporting GAL and GWT, later software packages, such as
ArcGIS, Stata, GeoBUGS, and LeSage and Pace Matlab-based spatial econometrics
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library (LeSage and Pace 2009) introduced their own formats. This led to a proliferation
of incompatible file formats, as illustrated in Table 1.

Most of these file formats only contain the values for the weights together with labels
for the neighbor pairs. However, there is typically no way to retrace the source of the data
set used to construct the weights, which type of weights was created and any transforma-
tions it may have been subject to. GAL and GWT contain a header line with limited
information, but this is insufficient for proper provenance tracking. For example, a
contiguity-based GAL weights file for Southern US counties starts as:

0 1412 south FIPSNO
54,029 1
54,009
54,009 2
54,069 54,029

The first line shows that the data set has 1412 observations, is derived from the south.shp
shape file and used the FIPSNO variable as a key indicator. However, the uninformed user
has no way of finding out which type of contiguity was used, whether the weights were
standardized or not, or how, etc. Other than clever ways to name the file, such as south_q.
gal which only the user understands, there is no mechanism to implement interoperability.

4. A proposed format for spatial weights metadata

To address these challenges, we propose a metadata structure for spatial weights prove-
nance. Its implementation relies on JavaScript Object Notation (JSON) and a key:value
data structure to encode the provenance information. JSON is light-weight and has much
less redundancy than an XML-based metadata structure, such as employed by ISO 19115.
Moreover, JSON can be matched directly to the dictionary data type in the Python
programming language, or to a hash table in other languages, such as Java and C.
Therefore, such a structure is easy to parse and interpret.

Figure 1 outlines our proposed metadata structure for spatial weights provenance.
Since spatial weights provenance is a special case of generic data provenance, the
metadata structure builds upon the typical triple template that includes <input, operation,
output>. To allow a flexible encoding of weights operations, this structure is extended to

Table 1. Spatial weights formats supported by PySAL.

Type File extension

Sparse contiguity (SpaceStat, GeoDa, R spdep, etc.) GAL
Sparse general weights (SpaceStat, GeoDa, R spdep, etc.) GWT
ArcGIS text weights TXT
ArcGIS dbf weights DBF
ArcGIS swm weights SWM
Matlab spatial weights (old version) DAT
Matlab spatial weights (new version) MAT
Lotus weights WK1
GeoBUGS weights TXT
Stata weights TXT
MatrixMarket weights MTX

6 L. Anselin et al.
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include input(s), weight_type, parameters, transform, and output. The weight_type and
transform belong to operations, and they are listed separately because these two types of
operations require different parameter patterns. The transformation operation, such as row
standardization, derives from an existing weights object, while the value of the weight_-
type is used to create a specific spatial weights object. The input(s) element identifies one
or multiple data sets that are used as sources to create the weights.

Each data set has two properties: type and Universal Resource Identifier (URI). The
type refers to the kind of data source used to generate spatial weights. This covers a wide
range of possibilities, including a traditional ESRI shapefile, a GML file, or information
contained in a geospatial database. These are direct data sources. The other data type is
derived, indicating that the input data is generated from another operation instead of being
provided directly. For a direct data set, the URI refers to the actual file location. For
example, if a file is located on a local machine, it would have the prefix file://. On the
other hand, if the file is on the Web, it would have the prefix http:// or ftp://. For a derived
data set, the URI refers to another weights metadata file (i.e., a wmd file) so that the
creation of the input data can be reconstructed in a recursive fashion.

The output element of the metadata structure provides the format in which the final
weights matrix will be encoded. In a standalone application, this output is typically just a
weights object in memory, while in a web service environment, the resulting weights
object should always be written to an external drive using one of the encoding structures,
e.g., gal.

Figure 2 outlines the conceptual semantic framework and describes the value space for
all elements in the proposed metadata structure, as well as the relationships between them.
In the figure, nodes in different colors refer to instances of the same type within the
hierarchy. For example, all nodes in pink refer to operations.

The root node is wmd (Weights MetaData), which is also used as a keyword for a
derived data set (leaf node in yellow). This embedded metadata structure allows for the
linking of the provenance for the current operation with that of historical operations. This
enables provenance backtracking and the replication of weights produced anywhere in the
entire workflow.

Figure 1. Weights metadata structure (wmd).

International Journal of Geographical Information Science 7
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A weights operation weight_type defines the construction of a specific type of spatial
weights matrix, such as contiguity-based weights, distance-based weights, and kernel
weights, among others. Each of these weights types has the same parameter pattern. For
example, there are two contiguity-based weights operations: rook contiguity (polygons
that share common borders) and queen contiguity (polygons sharing common vertices or
borders). Each requires parameters to determine if a higher order of contiguity is needed
(order) and if the latter includes lower order contiguities cumulatively (lower).

The metadata structure only considers the values in the leaf node. In fact, the parent
nodes in this framework are abstract definitions, while the leaf nodes correspond to
functions directly implemented in the PySAL spatial analysis package.

To illustrate the application of the weights metadata structure in support of the
chaining of operations, we consider the construction of a specialized spatial weights
matrix required for a regionalization problem (details are spelled out in Li et al. 2014a).
Figure 3 provides the context for this problem. It consists of the aggregation of 4109
Traffic Analysis Zones (TAZ) from six Southern California counties into 100 compact
regions. This regionalization is subject to two hard constraints: (1) each region must
consist of a set of connected TAZ; and (2) the TAZ forming a region must all belong to
the same county.

The connectivity constraint between neighboring TAZ is constructed by means of a
rook operation in PySAL. The combination of the two constraints is satisfied by means of
a series op set operations in PySAL. First, a second form of spatial weights is created for
the TAZ, in which all zones in the same county are pairwise neighbors of each other. This

Figure 2. A conceptual model for the value space of spatial weights metadata (wmd).

8 L. Anselin et al.
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precludes two TAZ located in a different county to be defined as neighbors, even if they
share a common boundary (as determined by the rook criterion). Such weights are termed
block weights in the PySAL terminology. Finally, the required weights are obtained by
applying a set operation on the contiguity and block weights to remove the edges from the
rook graph that cross county boundaries, as well as edges from the block graph that do not
correspond to a contiguity relationship. The graph of the resulting connectivity structure is
shown in Figure 3, based on shape files for the TAZ and the counties.

Figure 4(a)–(c) illustrate how this process is implemented in three metadata files. It
highlights the chaining of the operations, in which the contiguity and the block weights
are constructed directly from source data, whereas the final weights are created by
operating on these two initial weights.

As shown in Figure 4(a), the final wmd file has two data sources for input1, each an
uri that points to another wmd file, respectively, taz_block.wmd, and taz_rook.wmd. Each
of these files in turn have a specific data source specified in the data1 attribute. For the
block weights, shown in Figure 4(b), the source is a dBase type file (taz.dbf) that contains
the TAZ identifiers together within county field (id_variable: CNTY). Consequently, a
block weights matrix can be constructed by grouping the TAZ that belong to the same
county (i.e., have the same county identifier), as indicated by the weight_type block. The
provenance for the contiguity weights is shown in Figure 4(c), contained in the file
taz_rook.wmd. Here, the data source is a shape file (taz.shp) and the weight_type is rook.

The taz_intersection.wmd file structure illustrates how the two wmd sources are
combined and subject to the intersection weights type, resulting in a gal encoding. The
proposed metadata structure can thus effectively keep track of the chain of operations
required to obtain the final product. However, as a workflow becomes increasingly
complex, it will be difficult to carry this out as a manual operation without errors.
Instead, an automatic tracking of provenance and replication of the various operations
in the chain is desired.

Figure 3. Traffic analysis zones, rook–block intersection contiguity graph, and county boundaries.
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In the next Section, we incorporate our metadata structure into a Web Service frame-
work. In such a framework, the spatial weights provenance is tracked automatically and
any of the operations in the workflow can be replicated in a seamless manner.

5. A spatial weights web service

As a first step toward a spatial analytic workbench in a CyberGIS environment, we
implemented an experimental spatial weights web service on the servers in the GeoDa
Center (http://spatial.csf.asu.edu). This web service constructs the weights from provided
input data and manages the provenance, using the wmd format described above.

The web service adheres to the Web Processing Service (WPS) standard from
theOGC. This standard provides three interfaces to manage the input and output:
GetCapabilities, DescribeProcess, and Execute.

A service is invoked by means of a standard HTTP POST request that adheres to the
format for the required inputs and outputs as specified in the DescribeProcess interface.
This request spells out all the parameters needed for the execution of the back end process
as well as the desired type of response.

Figure 4. Example weights meta data for intersection chaining. (a) taz_intersection.wmd. (b)
taz_block.wmd. (c) taz_rook.wmd.
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The request and response are illustrated in Figures 5 and 6. The main part of Figure 5
consists of the information contained within the <wps:Execute> tags. There are three
important parts. One is the <ows:Identifier> for the weights web service, in this instance
chain_ws. Next are the <wps:DataInputs> and <wps:ResponseForm> tags. The first
contains the metadata information in the wmd format, in between the <wps:
LiteralData> tags. The contents are identical to what is shown in Figure 4(a). The
<wps:ResponseForm> tags contain the specification for the desired output. In our exam-
ple, this consists of both a wmd file and a regular weights output file (out), contained
between the <ows:Identifier> tags. As specified in the metadata under the ‘output’ key,
the output should be in the gal format.

The response message is illustrated in Figure 6. The most interesting part is contained
between the <wps:ProcessOutputs> tags. This consists of two <wps:Output> tags. Each of
these has the full URI for the respective output (the wmd metadata file and the gal file)
between <wps:LiteralData> tags.

A key aspect of the implementation of the spatial weights web service is the interface
between the process request and the specific PySAL functions that actually construct the
weights object. This requires an efficient parser of the information contained in the wmd
format. This parser needs to interpret the weights metadata, access the relevant files and
potentially be able to backtrack through the provenance chain to replicate all the necessary
intermediate steps in the workflow.

The logic of this parser is illustrated in Algorithm 1. It contains the pseudo-code for a
parser function (WMD_PARSER(meta_data)) that takes a hash table for the weights
metadata as input and returns a spatial weights object (pysal.weights.W).

Figure 5. Example WPS POST request.

International Journal of Geographical Information Science 11
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The main purpose of the parser is to track the provenance in a workflow of spatial
weights operations. There are two basic use cases. In one, referred to as derived in Line
2, the input is a URI for another wmd file. The parser then recursively goes through the
metadata hash table to create the weights files in question, as illustrated in Lines 2–6. In
the second use case, the input to the weights operation is a data file as specified by a
URI (Line 8). Here, we distinguish between a local and a remote file. In the former
case, the input data file is already on the local computer, and nothing further needs to be
done (Lines 9–10). In the latter case, the remote file needs to be downloaded to the
local computer, and its URI field replaced with the location of the local file (Lines
12–13).

Figure 6. Example WPS response.
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With all the information available, a task dispatcher invokes the required PySAL
functions and returns the final weights product. This is then written out in the specified
format and made available to the web service at a URI contained within the < wps:
ProcessOutputs > of the WPS response (e.g., as in Figure 6).

6. Performance evaluation

In order to evaluate the performance of the spatial weights web service in a realistic
environment, we conducted a number of experiments. These experiments address two
important properties of the service: (1) how the processing time changes with the size of
the data set to be processed; (2) how the processing time changes with an increase in the
number of concurrent requests for the service.

For the second question, we are also interested in the performance profile when
moving from a multi-core single machine to a compute cluster of distributed cores, i.e.,
a traditional HPC approach. We refer to this comparison as a scale-up versus a scale-out
solution. The scale-up solution is to improve system performance by utilizing a high-end
multi-core single server.2

The scale-out solution deploys the web service framework on the GeoDa Center web
server cluster. The cluster architecture, illustrated in Figure 7, consists of a front end and a
back end. For this experiment, we only employ the front end, which contains 30 dual-core
web servers, interconnected to handle multiple web requests. Each server is configured
with 2G Hz processor and 4G memory. The workload on these servers is managed by an
Apache load balancer.3 In addition to comparing the scale-up and the scale-out solutions
directly, we are also interested in the evolution of the performance as more compute nodes
are made available in the cluster to deal with concurrent requests.

Figure 7. Web cluster architecture.
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Algorithm 1: WMD_PARSEr(wmd_object)

Input: weights metadata as a hash table, examples can be found in Figure 4(a)–(c)
Output: a spatial weights object w: pysal.weights.W

1 for each input data i do
2 if derived then
3 uri ← get metadata URI
4 meta_data ←load uri, get metadata object as a hash table
5 w = WMD_PARSER(meta_data)
6 replace i's URI with w in wmd_object
7 else
8 uri ← get URI of the input data file
9 if local file then
10 do nothing

11 else
12 localuri ←download remote data files, save it to a local folder, and generate a

local URI
13 replace i's URI with localuri in wmd_object

14 weight_type ← get the requested weights operation from metadata
15 w ←dispatch job to PySAL by providing all input data sets
16 return w

We use the spatial weights web service to create both rook contiguity and k-nearest
neighbor spatial weights, with k = 4. The spatial layout is based on n random spatial
points in the unit square, with n varying from 10,000 to 100,000. Consequently, the
dimension of the spatial weights ranges in principle from 10,000 × 10,000 to
100,000 × 100,000, but because we employ sparse structures, the actual size of the files
involved is much smaller. We create the rook contiguity weights by first forming Thiessen
polygons around the random points and then deriving the contiguity from those polygons
(a standard procedure in PySAL).

In order to mimic the performance of an actual remote web service, we store the input
data sets (ESRI polygon and point shape files) on a data server in Provo, Utah. All
computations were carried out on the web servers in the GeoDa Center at ASU (in
Tempe, AZ).

6.1. Experiment 1 – scalability

The first experiment compares the overall time (in seconds) to create the rook contiguity
and k-nearest neighbor weights as the size of the data set moves from n = 10,000 to
n = 100,000. In Figures 8 and 9, we show the elapsed time on the vertical axis separately
for the server overhead, the data transfer, the computation and the total time. Each value
reported is actually an average over 5 separate runs to remove potential outliers due to
unforeseen system overuse.

Overall, it is clear that the largest share of the time is taken up by the actual
computations carried out in PySAL. This time increases in a near-linear fashion with
the size of the data set, with the rook contiguity weights running roughly twice as fast as
the k-nearest neighbor weights. Even with n = 100,000, the service overhead remains low,
even though this includes writing out the weights object from memory to a GAL or GWT
format file on the server and making it web accessible. In other words, the service
performs well with low latency and small overhead. The major challenge is to fine tune
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the algorithms used in the weights construction (potentially taking advantage of paralle-
lization), where the greatest speed gains could be obtained.

6.2. Experiment 2 – scale-up compared to scale-out approach

In the second experiment, we compare the performance on a desktop server with a total of
eight cores (scale-up) to a cluster environment with four compute nodes enabled, also
providing a total of eight cores (scale-out). We compute k-nearest neighbor spatial weights
with k = 4 for n = 10,000.

In Figure 10, we show the total time elapsed (in seconds) on the vertical axis against
the number of concurrent service requests, the latter increasing up to 30. The motivation
for the comparison is that the two setups handle multiple requests in a different fashion.
On the single server, each additional request forks a new process on an idle core to handle
the request, up until the point when all cores are busy (in our example, at the point of
reaching 8 requests). Any additional requests need to wait until a core is freed up. This

Figure 9. Spatial weights service response time – k-nearest neighbors contiguity.

Figure 8. Spatial weights service response time – rook contiguity.
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creates a dichotomy in processing time between requests that can be satisfied immediately
(a compute core is available) and requests that have to wait until a core is available.

In the cluster setup, the allocation of compute time is based on a round-robin strategy
implemented by the load balancer. When one computing node receives more requests than
the number of CPU cores available on the node, multiple threads are created and
scheduled using a round-robin strategy. As a result, all requests are processed concurrently
and carried out in an average time. In contrast, the single server solution has some
requests satisfied immediately, but others only with high latency.

Figure 10 shows a slight edge for the single server relative to the cluster, which in part
is due to the faster processor on the single server. As long as the number of requests is less
than eight, the total processing time is near constant, showing the power of the multi-
processing. When the number of requests exceeds eight, the processing time increases
linearly with the number of requests.

Figure 11 shows a similar picture, but now focused on the speedup curve, i.e., the
comparison to the time on a single core. As long as the number of requests does not
exceed 8, the speedup curve illustrates a steep increase, illustrating how the multiple
processors are being put to good use. Once the number of requests exceeds eight, the
speedup curve is essentially flat, showing no further gains. Interestingly, for exactly eight
requests, the speedup for the cluster is slightly better than for the single server.

6.3. Experiment 3 – scalability with number of cores

As a final experiment, we consider the effect on processing time of using the full
capability of a cluster HPC setup. We again compute k-nearest neighbor spatial weights
with k = 4 and n = 10,000. We also keep the number of concurrent requests at 128.

Figure 12 shows the total processing time on the vertical axis and an increasing
number of compute nodes on the horizontal axis, going from 4 to 64. Since each compute
node contains 2 CPU, the 64 nodes match the number of requests to the number of cores
(128). We show both the ‘theoretical’ expected time, based on the assumption that when

Figure 10. Processing time by concurrent service requests.
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the available compute cores double, the response time should be reduced by half. The
baseline response time is 400 seconds, for the case where four cores are employed.

The processing time goes from 400 seconds to about 20 seconds for a layout with 64
compute nodes. The actual time is slightly less than the theoretical average, suggesting
that the complexity of load balancing multiple distributed compute nodes is less than the
resource scheduling among CPU cores on a single server. This also highlights the high
scalability and low resource management overhead of the spatial weights web services
when deployed on an HPC cluster.

7. Conclusion

This article has introduced a framework for representation and capture of provenance in
spatial analytical workflows. A lightweight provenance model was developed for the case
of construction, manipulation, and the application of spatial weights reflecting neighbor
relationships between observational units that are central to many forms of spatial

Figure 12. Processing time by number of cores in the cluster.

Figure 11. Speedup by concurrent service requests.
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analysis. This provenance model addresses a critical need of supporting interoperability
between different spatial analysis packages by reducing the uncertainty surrounding the
lineage of the spatial weights with regard to any operations and manipulations that may
have been applied at earlier stages in a scientific workflow.

The framework supports both local and distributed workflows, the latter involving the
chaining of data sets and analytical operations that are located on geographically distinct
servers. Toward this end, we also embed the provenance framework within a high-perfor-
mance web service environment to ensure interoperability can be maintained in a distributed
context. Timing experiments reveal that the service scales very well both in terms of the size
of the problem under consideration as well as in handling simultaneous service requests.

Our spatial weights metadata prototype is an initial attempt at developing standards for
provenance tracking in spatial analytical workflows. We hope to explore collaboration
with other researchers in spatial analysis and cyberinfrastructure communities in refining
these standards and in extending these standards to the broader set of spatial analytical
services in future work.
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Notes
1. For a recent example of the implementation of parallelization in PySAL, see Rey et al. (2013).
2. Our experimental system consists of a Mac Pro workstation with two 2.93 GHz Quad-Core

Intel Xeon processors and 16 GB of 1066 MHz DDR3 ECC memory, running the Mac OS X
Lion 10.7.4 operating system.

3. The back end consists of 132 Quad-core HPC nodes with over 1000 computing cores
available. The front and back end of the cluster have access to 70 TB shared storage for
data exchange.
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