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Spatial pattern analysis plays an important role in geography for understanding geographical phenomena, iden-
tifying causes, and predicting future trends. Traditional pattern analysis tools assess cluster or dispersed patterns
of geographical features based on the distribution of nonspatial attributes. These metrics ignore the shape of
spatial objects—a critical consideration. The study of shape analysis, on the other hand, measures the com-
pactness, elongation, or convexity of an areal feature based merely on geometry, without considering patterns
of its attribute distribution. This article reports our efforts in developing a new pattern analysis method called
the normalized mass moment of inertia (NMMI) that integrates both shape and nonspatial attributes into the
analysis of compactness patterns. The NMMI is based on a well-known concept in physics—the mass moment
of inertia—and is capable of detecting the degree of concentration or diffusion of some continuous attribute on
an areal feature. We termed this the mass compactness. This measure can be reduced to a shape compactness
measure when the attribute is evenly distributed on the feature. We first describe the theoretical model of the
NMMI and its computation and then demonstrate its good performance through a series of experiments. We
further discuss potentially broad applications of this approach in the contexts of urban expansion and political
districting. In the political districting context, higher NMMI of a congressional district suggests a lower degree
of gerrymander and vice versa. This work makes an original and unique contribution to spatial pattern and shape
analysis by introducing this new, effective, and efficient measure of mass compactness that accounts for both
geometric and spatial distribution. Key Words: compactness, mass moment of inertia, political redistricting, shape
analysis, shape index, spatial distribution patterns.
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El anilisis de patrones espaciales juega un papel muy importante en geografia para la comprensién de los
fenémenos geograficos, la identificacién de causas y la prediccién de tendencias futuras. Con las herramientas
tradicionales de andlisis de patrones se evaldan los patrones de aglomeracién o dispersién de rasgos geograficos
basados en la distribucién de atributos no espaciales. Estas métricas ignoran la forma de los objetos espaciales—una
consideracién critica. El estudio del anlisis de formas, por otra parte, mide el grado de compactacién, alargamiento
o convexidad de un rasgo espacial basado meramente en geometria, sin considerar los patrones de su distribucién
del atributo. Este articulo informa sobre nuestros esfuerzos para desarrollar un nuevo método de andlisis de
patrones denominado momento de inercia de la masa normalizado (NMMI) que integra forma y atributos no
espaciales en el andlisis de patrones de compacidad. El NMMI se basa en un bien conocido concepto de la
fisica—el momento de inercia la masa—que es capaz de detectar el grado de concentracién o dispersién de algtin

Annals of the Association of American Geographers, 104(6) 2014, pp. 1116-1133 © 2014 by Association of American Geographers
Initial submission, September 2013; revised submission, January 2014; final acceptance, March 2014
Published by Taylor & Francis, LLC.



Downloaded by [Arizona State University] at 16:23 12 November 2014

NMMI: A Mass Compactness Measure for Spatial Pattern Analysis 1117

atributo continuo sobre un rasgo espacial. A esto nosotros lo denominamos compacidad de masa. Esta medida
puede reducirse a una medida de compacidad de forma cuando el atributo se halla uniformemente distribuido
sobre el rasgo. Primero describimos el modelo teérico del NMMI y su computacién, para luego demostrar su buen
desempefio por medio de una serie de experimentos. Adicionalmente discutimos las aplicaciones potencialmente
amplias de este enfoque en los contextos de expansién urbana y regionalizacién politica. En el contexto de la
regionalizacién politica, niveles mds altos de NMMI de una circunscripcién para el congreso sugieren un grado
menor de gerrymander [es decir, un grado mds bajo de manipulacién de las circunscripciones electorales para
favorecer un partido], y viceversa. Este trabajo hace una contribucién original y dnica al andlisis del patrén
espacial y forma al introducir esta nueva, efectiva y eficiente medida de la compacidad de masa que da cuenta
de la distribucién geométrica y espacial. Palabras clave: compacidad, momento de masa de inercia, regionalizacién
politica, andlisis de forma, indice de forma, patrones de distribucién espacial.

patial analysis methods aim to quantify, model,

predict, and simulate global and local character-

istics of human activities and physical processes
with mathematical and computational tools. GIScience
researchers in tool development aim to build, evalu-
ate, and enhance new and existing software to support
spatial analysis of the associated applications (Good-
child 1992). A selection of the numerous applications
that have benefited from the suite of geocomputational
tools include detecting gerrymander in congressional
elections (Gibbs 1961; Angel and Parent 2011), exam-
ining the variability of clusters of industrial activities
(Kies, Mrosek, and Schulte 2009), modeling patterns of
disease spread (Emch et al. 2012), understanding and
predicting ecological processes (Tischendorf 2001), op-
timizing the distribution of humanitarian aid (Vitoriano
et al. 2011), and simulating sustainable urban futures
(Huang, Lu, and Sellers 2007).

Within these applications, identification of spatial
patterns is always considered an essential component
to discern regularities and anomalies of geographically
referenced features. Some spatial patterns, such as clus-
ter detection and analysis, in which the identification
involves the comparison of the attribute values with
nearby spatial features, are often visually intuitive on a
map. Other patterns, such as those measuring the shape
or arrangement of polygonal objects within a predefined
geographic area, are difficult to quantify and therefore
require advanced mathematical modeling or statistical
analysis.

The most widely developed and applied suite
of spatial pattern analysis tools, such as k-means
cluster analysis and Getis—Ord Gix (Getis and Ord
1992; Cressie 1993), are most effective for detecting
clustering or dispersed patterns of point features.
These tools are limited in their ability to quantify
patterns for areal features such as population by census
tract, habitat type, or slope by watershed boundary.
Other approaches, such as Moran’s I (Moran 1950)

or Local Indicators of Spatial Autocorrelation (LISA;
Anselin 1995), take areal features as input to derive a
spatial weight matrix. The matrix quantifies the spatial
relationship of nearby features based on contiguity or
distance, ignoring the influence of the shape.

Shape—compact or not—is an essential dimension
of spatial pattern (Williams and Wentz 2008). Shape
here refers to a geometric representation as an outline
of a geographically referenced entity such as boundaries
of electoral districts, soil type boundaries, or areal delin-
eation around disease clusters. More formally and more
generally, shape is defined as an object that is indepen-
dent of rotation, translation, and scale (Kendall 1984).
This concept is essential for pattern analysis and com-
parison to determine if two or more shapes are similar to
one another. Shape analysis has been used as an essen-
tial building block to model and synthesize geographic
dynamics (Goodchild, Yuan, and Cova 2007), to assess
the constitutionality of political districts (Rinder, Arm-
strong, and Openshaw 1988; Fryer and Holden 2007), to
study urbanization involving large-scale changes in the
land uses (Huang, Lu, and Sellers 2007; Kies, Mrosek,
and Schulte 2009; Vitoriano et al. 2011), and to affect
spatial cognition processes, such as wayfinding, by af-
fecting environmental comprehension and recall (Grif-
fith 1982; Golledge 1992; Taylor 2005; Emch et al.
2012).

Quantifying shape for analysis or comparative pur-
poses involves a mathematical metric that assigns each
unique shape with a corresponding and reproducible
unique numerical representation. One such set of these
metrics is the compactness measures, which quantify the
density or close proximity of the defined boundary to
other shapes in the data set (MacEachren 1985; Wentz
2000; Angel, Parent, and Civco 2010). A fundamental
limitation of existing compactness analysis tools, such
as the Isoperimetric Quotient (IPQ; Osserman 1978),
is that they focus solely on the geometric boundary
of a spatial object and ignore its attributes. In many
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real-world applications, the geographic boundaries of
a region and the distribution of attributes within the
region need to be incorporated into the metric. For ex-
ample, in electoral redistricting, both compact shape
and compact population are desired goals to avoid ger-
rymander (Weaver and Hess 1963). Here compact pop-
ulation means a concentrated population distribution,
which reduces overall travel distances from each loca-
tion of residence to its population center. In manage-
ment science and spatial optimization, providing better
coverage without increasing the size of the sales teams is
always a primary goal to maintain high margins. Max-
imization of margins is best obtained by partitioning
sales territory into compact regions in which the num-
ber of households or places a salesman needs to visit is
maximized and the travel distance is minimized. In this
case, both shape (compactness of sales territory) and
attribute (sales activities) need to be considered in the
compactness measure (Hess and Samuels 1971).

This article presents and evaluates a new approach to
pattern analysis of areal features that integrates both the
geometric properties and the distribution of attributes
into the measurement of spatial pattern, which we call
the normalized mass moment of inertia (NMMI). The
mass moment of inertia (MMI) is a concept in the field
of physics that assesses the dispersion of unevenly dis-
tributed attributes within an object. The mass in NMMI
can be interpreted as the quantity of any descriptive at-
tribute, such as population or salesman activity, within
an areal geographic feature. The NMMI is capable of
measuring the mass compactness, namely, the concen-
tration or diffusion of a continuous attribute within the
feature. It is also capable of quantifying shape compact-
ness when the attribute is evenly distributed on the areal
object. The remainder of this article includes a detailed
review of existing pattern and shape measures, a mathe-
matical model of the NMMI approach, a demonstration
of the behavior of NMMI utilizing simulated data, an
application of the NMMI in political redistricting us-
ing real-world data, and a conclusion that highlights our
major findings and suggests future research directions.

Spatial Pattern Analysis

The literature to support our research is derived from
research on geospatial pattern analysis and shape anal-
ysis. Pattern analysis research is relevant because prior
studies demonstrate that both the geometric features
and the associated attributes are essential to the anal-
ysis. The major shortcoming in most of the pattern

analysis research, however, is that the shape of areal
features is not incorporated into the geometric analysis
of pattern. We therefore rely on research from shape
analysis to provide the theoretical basis for this part of
our study.

Pattern Analysis

According to different types of input data, spatial pat-
tern analysis can be divided into the analysis of point
features, line features, and areal features. Point pattern
analysis tools discern spatial patterns through the mea-
surement and comparison of the attribute values and
geographic location rather than the geometric (e.g.,
shape) aspect of pattern (Boots 2003). The Getis—Ord
Gix* statistic is a commonly used method to identify
clusters of points with values higher in magnitude. K-
means analysis detects patterns of points by examining
distances between each point and its k closest points and
compares the values with a sample of points generated
from a complete spatial randomness pattern. Ripley’s
k-function (Dixon 2006) and the weighted k-function
(Getis 1984) are also popular to determine whether a
set of point features is clustered at multiple different
distances.

Line Features. Line pattern analysis tools inves-
tigate the topologic and geometric variations in linear
structures focusing on connectivity, flows, accessibil-
ity, and continuity (Xie and Levinson 2007). Different
methods to analyze structural pattern characteristics
include use of fractals to characterize line complex-
ity (de Keersmaecker, Frankhauser, and Thomas 2003),
Fourier transforms to quantify the periodic dynamics of
roads (Dendrinos 1994), entropy for investigating con-
nection patterns (Xie and Levinson 2007), and linear
programming to analyze hub-and-spoke design (O’Kelly
and Lao 1991). Much of the spatial line analysis re-
search relies on graph theory methods, which eliminate
line shape and focus exclusively on the type and in-
tensity of connectivity and interactions (Derrible and

Kennedy 2009).

Areal Features. A typical way to analyze patterns
of areal features is to reduce the areal feature to a point
and then perform analysis on these point features (Zhu
and Byrt 2003). Other methods used are the join count
method (which tends to be mostly for nominal features)
and many of the patch-based functions as implemented
in the landscape ecology software FRAGSTATS (Mc-
Garigal and Marks 1995). Some spatial autocorrelation
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techniques, such as Moran’s I, LISA, and Geary’s ¢
(Moran 1950; Geary 1954; Anselin 1995) can also take
areal feature as input. Only adjacencies of neighboring
features are derived from these areal features for
computing spatial covariance, however; their shapes
are ignored in the analysis. One known exception is the
TOSS method, which assesses whether or not features
with similar attributes, orientation, shape, and size are

clustered or distributed (Williams and Wentz 2008).

Shape Analysis

We categorized shape metrics into measures of shape
complexity and shape compactness (Wentz 2000).
Shape complexity here refers to the intricacy or amount
of connectivity of the edge boundary or the fragmen-
tation of objects. Methods used for measuring shape
complexity include Fourier analysis (Moellering and
Rayner 1981) and fractal analysis (B.-L. Li 2000). Shape
compactness, on the other hand, measures the den-
sity or closeness of elements on an object. Compact-
ness measures can be classified into four categories:
area—perimeter measures, reference shape, dispersion of
elements of area, and mass measures. We organize our
review around these four categories but we provide more
details on the mass measures because they form the basis
of this study.

Area—Perimeter. In 1822, Ritter proposed one of
the first compactness measures based on simple rela-
tionship between area and perimeter (Frolov 1975).
This index does not provide normalization to a Eu-
clidean shape; therefore, its value varies with the size of
a patch, causing the known “size problem” (Farina 2006,
319-23). Modifications of the Ritter measure have been
presented in many different forms (Miller 1953; Reock
1961; Schwartzberg 1965). In landscape ecology, cor-
rected perimeter—area (CPA) is widely used to solve
the size problem. CPA equals the product of a con-
stant value (0.282) and a shape’s perimeter, p, over the
square root of the shape area, A. Its mathematical form
is CPA = 0'2?/27:13 . This value equals 1.0 for a perfect cir-

cle to infinity for an infinitely long and narrow shape.
The iso-perimetric quotient (IPQ) approach (Osserman
1978), defined as the ratio of the area (A) of a shape to
the area of a circle with the same perimeter (p) of the
shape, is also a widely adopted compactness measure.
Mathematically, it can be represented as IPQ = %A,

There are a number of variations of IPQ), such as those

presented in Aslan, Gundogdu, and Arici (2007). These

approaches have the advantages of being generally ap-
plicable to both vector and raster data and invariant
to size change (Bacio, Lobo, and Painho 2005; Patrick
2010). They suffer from sensitivity to irregular bound-
aries and an inability to handle holes, however (W. Li
etal. 2013).

Reference Shape. The second class of measures in-
volves the measurement of the difference between the
actual shape and its reference standard shape that is
deemed as most compact; for example, a circle in a
vector model or a square in a raster model. One such
measure is the Reock test (Reock 1961), which takes
the ratio of the actual area to that of the minimum
circle that completely encompasses the actual shape.
Similar measures include those developed by Pounds
(1972), where the perimeter instead of area was used to
calculate compactness. Bottema (2000) presents a com-
pactness index by overlaying a shape S with a circle that
has the same area of S and compares the part of area in
S that falls outside of the circle with S. Similar indexes
include a shape index to measure parcel compactness by
Amiama, Bueno, and Alvarez (2008) and Demetriou,
See, and Stillwell (2013), an elongation index by Wentz
(2000), and Zhao and Stough (2005). One common
downside of reference shape measures is that they are
inflexible to measuring shapes with frequently chang-
ing boundaries, such as a convoluted shape. Angel and
Parent (2011) proposed a refined compactness measure
that aims at removing the effect of geographical con-
straints in a shape compactness measure. The measure
compares the share of area of a shape that is inside an
equal-land-area circle (with area of water excluded) and
is more effective in measuring compactness of political
districts than the Bottema index (Angel, Parent, and
Civco 2010).

Dispersion. The third set of measures was devel-
oped based on dispersion of the infinitely small elements
that compose a shape to the centroid of the shape. One
core concept used in developing the measure is known
as the area moment of inertia (MI). Several researchers
have examined the utility of the area MI test and its
various forms in geographical problems. This measure
overcomes the limitations of the preceding compact-
ness measures in terms of sensitivity to size change, in-
flexibility to frequent shape changes, and instability to
irregular shapes. Additionally, it has been demonstrated
as the most effective approach to measure compactness

(Weaver and Hess 1963; Massam and Goodchild 1971;
Maceachren 1985).
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Mass Measurements. Mass measurement, which
aims at using physical models to simulate social
interactions and movements, belongs to the field of
social physics, which has drawn much attention and
studies in the geography community (Stewart 1950;
Warntz 1973; Rich and Rich 1980; Couclelis 1999;
Goodchild 2004). Weaver and Hess (1963) proposed
a compactness measure based on the notion of popula-
tion MI. Here population is the attribute mass. It uses
the continuous form of the area MI and calculates this
physical quantity about the center of population gravity
instead of the shape centroid. This method is capable
of detecting extremely noncompact districts because
the population MI is accumulated as parts of the
district stay far from the population center. Although
population center is used, the actual distribution of
population is not considered in the computation. For
this reason, it fails to provide a reasonable measure of a
region that compacts population but has a noncompact
shape.

In the field of management science, a number of re-
searchers (Dantzig and Ramser 1959; Burns et al. 1985;
Laporte 2009) proposed measuring compactness as the
total length of the network or travel routes within each
defined region. The smaller the distance is, the more
compact a region is. This measure can be considered
as a discrete form of the MI, because a more compact
shape should not only minimize sum of distances (or
squared distances) among each pair of basic elements
but also minimize the sum of the MI of each basic
element. For this reason, existing measures are only
crude estimations of the area MI, and they only stand
when the shapes and areas of basic elements are the
same.

W. Li et al. (2013) proposed a robust compactness
measure—the normalized moment of inertia (NMI) and
demonstrated its superiority over the commonly used
[PQ approach. The NMI approach involves the calcu-
lation of second MI of an area about its centroid. Ac-
cording to Massam and Goodchild (1971), the MI of a
shape (I) about its centroid is defined as the integral of
the squared distance (zG) between an infinite small area
(da) on the shape and its centroid G. Mathematically,

I:/zéda. (1)

Correspondingly, the NMI of a shape S is defined as the
ratio between the MI of a circle that has the same area
as S and its M1 value. Suppose the shape’s area is A; the

NMI can be formulated as

Iy, A
NMI = —

- 2
I~ 2l (2)

where I is the MI of S about an axis perpendicular to S
and passes through its centroid G. Iy = A?/2x is the
MI of a reference shape—a circle with the same area of
S. NMI has an interval of [0, 1], with O for the infinitely
elongated shape and 1 for the most compact shape—a
circle. This model is efficiently solved using the trapez-
ium approach to polygon area and MI computation and
has been widely applied to shape analysis in political
districting (Kaiser 1966; Young 1988), the modifiable
areal unit problem (MAUP; Openshaw 1977, 1978),
the automatic zoning procedure (AZP; Martin, Nolan,
and Tranmer 2001), and a variety of regionalization
problems (Duque, Ramos, and Surinach 2007; W. Li,
Church, and Goodchild 2014b).

In reality, though, essential nonspatial attributes,
such as population density or wildlife distribution, are
generally nonuniform. When the distribution of an at-
tribute (we use mass to refer to the total unweighted
quantity of the attribute value, such as total population)
is taken into account, the NMI method for computing [
in Equation 1 becomes invalid, because this measure is
based purely on geometry. To address this issue, the in-
dex must be renovated to compute (1) the MI of S when
mass distribution is considered and (2) the area and MI
of the referenced circle. The second issue is a critical
point because when some mass is not evenly distributed
on S, the area of the reference shape will no longer be
A. For example, if a circular shape is composed of two
parts (Figure 1), the density of the red part p; is far
higher than the density p; of the green part. Although
the entire shape remains a circle (very compact in terms
of its shape), when considering mass distribution on it,
the shape of the red part would contribute much more

(a) A circular shape with different
density distribution inside. shape

(b) Part of the original circular

Figure 1. The case of two different shapes with the same shape
compactness value.
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to the overall measure of compactness than the green
part does. In the extreme case when p; > p;, the effec-
tive area of the shape in Figure 1A becomes that shown
in Figure 1B, smaller than its actual shape. Therefore,
the compactness of this region will no longer be 1, re-
ferring to its circular shape. Instead, this value should
be less than 1 and be the same as the NMI obtained for
the shape in Figure 1B. Therefore, identifying (1) the
MI of a shape when a nonuniform mass distribution is
considered and (2) a reference shape on which the same
amount of mass can be distributed to obtain the mini-
mal mass MI become essential tasks for a new measure
of mass compactness.

We next describe a new mathematical index based
on classic physics concept of inertia mechanics to tackle
the problems just identified. The MMI is introduced to
compute the MI of a shape with uneven mass distribu-
tion. The MMI of a referenced shape is also derived to
normalize the MMI value of a shape. The NMMI, which
takes the ratio between the MMI of a shape and that of
a reference shape, is introduced as a novel approach to
measure the mass compactness pattern.

Mathematical Model of the NMMI

Measure

Computation of NMMI involves two steps. The first
step is to derive the mathematical formula for MMI of
a shape and the second step is to obtain the MMI of the
reference shape to obtain the normalized value. The
mass is the total unweighted amount of any nonspatial
attribute on a shape, such as total population or sales
team activities.

This model can take both vector data and raster data
as input. For vector input, a hierarchical data structure
is required. Besides the boundary of the study area (i.e.,
congressional districts), the mass compactness of which
to measure, a secondary set of areas (i.e., census tracts),
or unit shapes, embedded within this study area is also
required. There is an assumption that the attribute is
evenly distributed on a unit shape. As for raster input
data, the basic unit is a pixel and the attribute value of
a pixel is the mass. The entire study area is composed
of coterminous pixels that compose a shape.

MMI of a Basic Unit
The MMI is computed based on the concept of MMI:

Tnass = f plr)ridv, 3)

where I, is an object’s MMI about a fixed axis, and
p(r) is the mass density at any point r. When an object
is two-dimensional, we define its MMI I as

16 _ A [dPxpi(ri) xda;
o fpi(fi)*dai

(4)

where A is the area of the object i, da is an infinitesi-
mal part of area A;, and p(da; ) is the density function of
some mass i. G; is I's center of mass (centroid weighted
by the property to measure), and d is the distance from
da; to G;. Assuming that the attribute is evenly dis-
tributed on object i, namely, p(da;) is a constant p;,
Il-Gi can be simplified to

IiGl :p,‘/dzdai = ,OiI, (5)

where IiG’ is equal to p times the area MI I of object
i. The definition and computation of I is discussed in
detail in W. Li et al. (2013). When the property is
not evenly distributed on a shape, the moment of a re-
gion should be computed from its building blocks (basic
units), the density of which is a constant.

MMI of a Study Area Composed of Unit Shapes

Given two coterminous unit shapes' u; and uy, u;
has mass m1, area A, and density p;, and u; has mass
my, area Ay, and density p,. Therefore, we have

mi

P1 = XI (6)
m;
P2 = XZ (7)

Knowing that the centroids for u; and u; are
G1(x1, y1) and G(x3, y7), respectively, as the attribute
to measure is uniformly distributed on these unit shapes,
G and G; are both the area centroid and the center of
mass. Given the preceding definitions, the MMI ¢ of
the new shape combining the two unit shapes becomes

19 =17 + I + myd? +myd? (8)
(', y) = (mlxl +sz2’ miy1 +mzyz> (9)
my +mp my +mp
mip +mp
== 10
P o (10)
A=A+ A, (11)
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where (x/, y') is the center of mass and p’ is the average
weighted density. d; is the Euclidean distance between
G’ and Gy, and d; is the Euclidean distance between
G; and G'. When p; = p; = p, [9 = pI, where I is
the area MI of the region (shape that combines the two
unit shapes) measuring compactness based purely on
geometry.

Given this additive feature, when a shape is com-
posed of multiple unit shapes with different density, the
overall MMI can be computed through Equations 8 to
11 cumulatively.

Mass Moment of the Reference Shape

One crucial quantity in this approach is the MMI
of the reference shape, which must also incorporate
the nonspatial attributes as well as the geometric effect.
Here, we derive the MMI I of the reference shape Z of
aregion Z. A commonly used reference shape is a circle,
which has the smallest inertia and uniform distribution
of an attribute. Previously, when only the shape is con-
sidered, Io is calculated as the MI of a circle, Iy = 5,
where A is the area of Z. The NMI, expressed as the
ratio between Iy and I, is always smaller than or equal
to 1. With the mass distribution included, one would
assume that Iy is the MMI of a circle with the same
area and with uniform distribution of the total mass.
Unfortunately, the normalized value obtained this way
exaggerates the effect of the part of the area with lower
density. For instance, given a region with a square shape,
when half of the region’s density is much larger than the
other half, the MMI of the entire shape would be the
same as the part with higher density. Correspondingly,
the reference shape should have an area at only half
of its original shape. If we take the original area into
computing Iy, the normalized value will be larger than
its upper limit 1. We introduce the concept of effective
area to address this issue.

When one shape is composed of two unit shapes, one
has mass m; and the other has mass m;, and mathemat-
ically, the effective areas of the two parts are

A = mi <A1+ mln(m,pz)Az) (12)
my +m; P1

A= (AZ+MA1), (13)
mip +m; P2

where function min(p1, p;) takes the smaller density.
The effective area of each part includes its own area
weighted by its mass contribution and the area con-

tribution from the other part weighted by the density
ratio. The MMI of the reference shape with the same
mass and total effective area can be represented by

m

lo = 2= (A + A). (14)

27

Substituting A} and A with definitions in Equation
12 and 13, we obtain

1
Iy = T [p1 A} + p2 AL + 2min(py, p2) Al Ay ] .
(15)
When p; = p; = p, Ip can be reduced to

_ (A + Ay)? . mA

I = —.
0 2T 2

(16)

Substituting Iy in Equation 2, the NMMI result will
be consistent with the NMI result, demonstrating its
good performance in dealing with edge case for which
p1 = P2-

For another edge case, when p; > p;, the contri-
bution of the second part to the overall compactness
is negligible, meaning that the compactness of the en-
tire shape will be the same as that of the first part of the
shape. Mathematically, A| becomes A; and A} becomes
0. Therefore, Iy ~ mzl—;?l. According to Equation 8,

19 = IlGl—i-Isz—i— mydi+mydi= 1101 = /011G1 (17)

AZ
NMMI = 22 ™A .

= = NMI. (18
1¢ 27-[10111(31 2r Ly (18)

Through the preceding analysis, we demonstrate
mathematically that the proposed NMMI can handle
the edge cases for which p; = p; and p; > p;. When
values of p1 and p; are between these cases, Iy in Equa-
tion 15 is the minimal MMI to reach when distributing
a known mass on a two-dimensional shape. Therefore,
the NMM]I, a value between Iy and I of a given object,
has an interval of [0, 1], with upper bound 1 repre-
senting the most compact region and lower bound O
representing the least compact region.

When a region is made up of multiple unit shapes
(n > 2) with different uniform density, the formula for
computing Iy can be extended to

N 2
Iy = (Z\/EA;) +szin(pi,pj)AiAj-
i=1 i<j
] (19)
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Given the equation for computing MMI of the refer-
enced shape, the new index NMMI can be easily com-
puted by applying Equation 2. Note that, with the mass
distribution included, the new measure is not just a mea-
sure of shape compactness in the traditional sense; it is a
measure of compactness in terms of the concentration
or diffusion pattern of some mass (or some attribute
value). The NMMI retains the same interval [0, 1] of
the compactness measure NMI but the interpretation
of the metric can be quite different. For example, for
the compactness of 1, NMI simply indicates a circle,
whereas in our new NMMI it can be a very irregular
shape but the mass only concentrates on a circular sub-
area. We name this new measure the mass compactness,
which covers pattern analysis broader than merely the
shape compactness that the traditional compactness in-
dex covers.

Demonstration of NMMI

In this section, we use simulated data to demonstrate
how the mass compactness of an areal feature changes
with different distribution patterns of some attribute.
The NMI approach is chosen as the benchmark index
for the following reasons: (1) as discussed earlier, the
NMMI, which measures the mass compactness, can re-
duce to the measure of shape compactness when some
attribute is evenly distributed on an areal feature; there-
fore, there is a need for a shape compactness index to
cross-compare the results; (2) the NMI approach has
been demonstrated as one of the most effective ap-
proaches in measuring shape compactness through ear-
lier studies; and (3) the MMI used in NMMI and the
area MI used in NMI are both derived from Newton’s
law of inertia with one measuring the inertia for the
whole mass and the other measuring the inertia for only
the surface of an object. These two concepts are closely
related to each other, and the NMMI approach, when
being reduced to the measure of shape compactness,

should yield the same value as the NMI.

Measuring Compactness of the Same Region with
Different Mass Distribution Patterns on Simulated
Data

Figure 2 illustrates several cases with different mass
distribution in a square shape. In Figure 2A, the mass
of a strip dominates at the center, whereas in Figure 2B
the mass concentrates on a subsquare at the center. In
Figure 2C, the mass has some distribution cut by a corner
of a square and the mass dominates along the diagonal

line in Figure 2D. If the NMI model is used to calculate
the compactness, these four cases should give the same
compactness of a square, 0.955, but obviously we missed
the most important information of mass distribution.

Based on our new NMMI model, the compactness of
these shapes depends on the density, X, of the purple
area. The calculated compactness is shown in Figure 3
where the density of the white area pyh;.e = 1. For
In(X) = 0, where X = 1, this large square region has
uniform mass distribution. Therefore, all cases have the
same compactness of 0.955, as expected, demonstrating
that our NMMI model can be correctly reduced to the
previous NMI model. As X increases, the compactness
of the case in Figure 3A decreases monotonically and
eventually reaches a constant value of 0.367, the NMI
compactness of the purple area inside. For the case in
Figure 3B, one notes that the compactness is a constant
for all the values of X. This is expected because the
purple area has the same shape as the outside square.
The compactness of the case Figure 3D also decreases
monotonically as X increases but in a different manner
from that of the case in Figure 3A because of a different
shape of the purple area in Figure 3D. The purple area in
Figure 3D is wider than that in Figure 3A, which leaves
a large compactness of 0.496 at large X. Interestingly,
the compactness of the case in Figure 3C increases as
X increases, because the purple shape is more compact
than a square. In fact, the NMI compactness of the
purple shape is 0.986, which is exactly the limit value
we get at large X in Figure 3.

An important feature in Figure 3 is the X value. The
compactness of all the areas changes mostly on the in-
terval of X = [1, 400], indicating the effect of the mass
distribution is important in this region. Indeed, for X =
2, the compactness of the cases in Figure 3A and Figure
3Dis0.73 and 0.62, respectively, very different from the
value of 0.955 without the mass distribution included.
This demonstrates that it is important to take the
mass distribution effect into account when calculating
compactness.

Measuring Compactness of a Region with More
Complex Patterns

In an urban expansion scenario, a small star town
appears in the vacinity of a major city and expands
over time. The compactness of the process can be very
important for measuring the region’s transportation ef-
ficiency or use as a reference for setting up fire stations,
retail stores, hospitals, and other public facilities to bet-
ter serve its residents. Of course, an important factor,



Downloaded by [Arizona State University] at 16:23 12 November 2014

1124 Lietal.

(B) Figure 2. One shape with different
density distribution patterns. (Color fig-
ure available online.)

the population density, must be taken into account for
calculating the region’s compactness. We simulated the
scenarios in Figure 4. In a 15 x 30 rectangular region,
there are two near-circular shapes. Initially (at time tp),
only one city A was in the west side of the rectangu-
lar region. At time t;, a new city B was developed at
the northeast corner of the region and started to attract
immigrants. Next, the population of city B gradually
,tao1). At t,,, city B’s popu-
lation becomes the same as that of city A. From t,, city
B’s population surpasses city A. The population density
of the white area in the rectangular is set to be a low
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Figure 3. The normalized mass moment of inertia (NMMI) com-
pactness of the cases illustrated in Figure 2 as a function of the
density X.

constant value 1, indicating its very sparse population
distribution. Whereas the population density of city A
is a consistently high value (In (pa) = 20), the popu-
lation density of city B is a variant X, which starts at
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tp: Only one city A developed in the entire region

tr...t,.1: The population in city B starts increasing
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Figure 4. Urban development scenario. (Color figure available online.)

1 and keeps increasing until it reaches (In (X) = 30).
Let us study the compactness of this area through the
development of city B.

The calculated results are shown in Figure 5. The
blue curve shows the expected NMI compactness 0.764,
when the population density distribution is not in-
cluded. When the NMMI approach is applied, the
compactness value demonstrates an interesting varia-
tion. When the population of city B is much less than
that of city A (< In(X) = 6, the first seven points
on the red curve), the effect brought by city B is
negligible. As the population density of B increases,
its effect on the overall compactness starts to appear,
indicated by the gradual decline of values in the curve.

tye1.... The population in city B is more than city A

When city B’s population reaches as high as city A,
the minimal compactness value (0.10) is achieved. In
this case, no shapes will take a leading effect in the
overall compactness measure and the population is the
most dispersed. When city B’s population goes beyond
that of city A after t,, the shape of city B, which is
a near circle, starts to take more effect and the com-
pactness value of the whole region increases again. An-
other interesting finding is the symmetric change of
the curve around t,, when city A and city B’s popula-
tion and density become the same. This phenomenon
shows that the proposed algorithm is not sensitive to
the absolute positioning of dense areas; only the pattern
matters.
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Figure 5. Variation as density distribution of the region changes.

An Application of NMMI in Political
Districting

This section introduces an empirical study that (1)
compares the use of NMI and NMMI in assessing com-
pactness of Wisconsin’s congressional districts and (2)
shows the effectiveness of NMMI in the process of po-
litical redistricting to prevent gerrymander. Population
distribution is an important factor to be considered in
this case because not only the shape of the congres-
sional districts needs to be compacted but also the pop-
ulation (Hess and Samuels 1971). This is because if
the population is largely diffused in an elongated sub-
region even on a compact shape, large bypassed com-
munities will be generated, making voters stay far away
from the population center, the presumed location of a
district’s electoral seat. This could also indicate the in-
tentional partitioning of people belonging to the same
political party to win the election—a typical case of
gerrymandering.

Because the compactness of a shape is visible on a
map but the mass compactness is not, the NMI is applied
as a benchmark index to demonstrate the differences in
compactness measures when population distribution is
considered.

Assessing Compactness of Congressional Districts
of Wisconsin

Compactness is always is an important criterion to
evaluate gerrymander in congressional districts. The
113th congressional district in Wisconsin was selected
as the study area because of its egregious gerryman-
dering. In this study, we demonstrate how to use the

Legend
Party

o
Cr

0 15 30 60 Miles
[

Figure 6. Wisconsin’s congressional districts: Districts in blue are
Democrat seats and districts in red are Republican seats. (Color
figure available online.)

proposed NMMI measure to suggest the possible
existence of gerrymandering. The NMIs for all con-
gressional districts are also computed as reference data
indicating the compactness of regions’ shape.

gath
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Legend
[] cD Boundaries (8)
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Figure 7. Dot density map for congressional districts in Wisconsin.
Each dot represents 1,000 people in a ward.
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We obtained the 113th congressional district data
from the state legislative districting website (http://

legis.wisconsin.gov/ltsb/redistricting/redistricting.htm).

Figure 6 shows the overview of the eight congressional
districts (CDs) in Wisconsin. Among these CDs,
five of them (CD1, CD5, CD6, CD7, and CD8) are
held by Republicans (in red) and the remaining three

District 1 |

 District 4 |

N

A ag it B
o

0 10 20 Mies

[P

' District 2 |

are held by Democrats (in blue). Each district has
approximately 710,803 people (based on the 2010 U.S.
Census). Data for wards, which are basic units for
drawing CDs, were retrieved from the same website.
Figure 7 depicts a dot density map of the entire state
and Figure 8 shows the population distribution in
each district based on wards. Visually, it can be seen

' District 3 |

PERSONS
[ Jo-38a [[]e19-822 [ 1246 - 4000
[]385-612 [ 823 - 1245

Figure 8. Shape and population distribution of each congressional district. All districts use the same color scheme, as shown at the bottom

of all figures. (Color figure available online.)
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Figure 9. Comparison of compactness of eight congressional dis-
tricts in Wisconsin using normalized moment of inertia (NMI) and
normalized mass moment of inertia (NMMI).

that although CD#4’s shape is not very compact, the
population is highly concentrated within the district.
Therefore, it should receive a high NMMI score. In
contrast, CD3, which has a Y shape and a quite diffused
distribution of population, should receive a low NMMI
score.

To verify our observation, both the NMMI and
NMI on the shape files of the districts were applied
and the results are displayed in Figure 9. When only
the geometric shape of these CDs is considered (us-
ing NMI), District 2 receives the highest value in
compactness—0.9—followed by Districts 5, 7, 8, 1, and
6. District 3, which has a Y shape, and District 4, which
has an elongated shape and an irregular boundary, re-
ceive the lowest values (0.53 for District 3 and 0.54 for
District 4) on the NMI measure. Although District 7
is associated with islands, as these islands are relatively
small compared to the mainland, and the overall shape
of District 7 is close to a circle, it is still considered to
be compact.

When the NMMI measure is applied, the compact-
ness value distribution changes. First, the overall trend
in Figure 9 and Table 1 shows that the compactness val-
ues, when considering population distribution on a CD,
all decrease from the original NMI measure. This is not
surprising, because in reality it is difficult to have uni-
form population distribution within a large region. This
nature of uneven distribution causes the lower value in
the compactness measure. Recall from earlier experi-
ments that when the property to measure shows a uni-
form distribution on a shape, the NMI and NMMI yield
the same value. Second, District 4, which has almost
the least compact shape over all CDs, is now ranked
as the most compact region when population distribu-
tion is considered. Several reasons explain this turnover
in compactness measure. First, District 4 is 100 percent
urban area, which is much denser than other CDs. The
area of District 4 is only 129 square miles, or 0.0018 per-
cent of the entire state. Although a smaller area does
not mean that the area could be more compact, it does
show from Figure 9 that this CD’s population is much
more concentrated than the others. Second, looking at
the pattern of population distribution, most of the pop-
ulation is located in middle to upper north Milwaukee
in this district. The city of Glendale, which is located in
the northeast of the district, has much less population.
Due to this fact, the population exchange between the
northeast areas and the main district area is minimal,
indicating stronger voter proximity and a lower degree
of gerrymandering in this district.

The worse cases occur for Districts 1, 3, and 6. All
have more a compact shape than District 4, according to
NMI. When considering population distribution, how-
ever, their NMMI compactness scores become much
lower than that of District 4, indicating a higher degree
of gerrymandering. This is because population is widely
dispersed in these districts or areas of dense popula-
tion even appear along the boundaries of some districts,

Table 1. Compactness value distribution of Wisconsin congressional districts (CDs) using normalized moment of inertia
(NMI) and normalized mass moment of inertia (NMMI) approaches

CD1 CD2 CD3 CD4 CD5 CD6 CD7 CD8
NMMI 0.16 0.26 0.14 0.46 0.25 0.16 0.22 0.32
NMI 0.77 0.90 0.53 0.54 0.86 0.65 0.84 0.78
M NMI NMMI
Republican CDs 0.48 0.22

Democratic CDs

0.72 0.29
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Figure 10. Possible adjustments for Congressional District 1 according to population distribution: (A) Current CD1; (B) two plans to redraw
boundaries of CD1 in a redistricting process; (C) CD1 after implementing Waukesha plan; (D) CD1 after implementing the New Berlin plan.

(Color figure available online.)

such as District 1, making them less compact than those
measured purely on shape. Among these three districts,
District 3 receives consistently low values from both the
NMI and the NMMI measures, coming from its least

compact shape and the dispersed population distribu-
tion on the shape. For Districts 2, 5, and 8, despite their
spread-out distribution of population, there are always
clear clusters of high-density areas near their population
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centers: Madison in District 2, the northern Milwaukee
suburb in the southeast corner of District 5, and Green
Bay in District 8. These clusters contribute positively
to the measure of mass and population compactness be-
cause trips to the population center are minimized for
these clusters.

Table 1 also shows the mean values of compactness
using both the NMI and the NMMI measure. The mean
NMMI of Democratic districts is 0.29, 32 percent higher
than the mean NMMI of the Republican districts, sug-
gesting a lower degree of gerrymandering among the
Democratic districts and a higher degree of gerryman-
dering in Republican districts. This finding coincides
with that found in Fischer (2013). The NMI measure,
however, yields the opposite conclusion. From the pre-
ceding analysis, one can tell that the NMMI measure
can well be applied to detect the possible existence of
gerrymandering: The higher value the NMMI is, the
less gerrymandered a CD is and vice versa.

Implication of NMMI Results in Political
Redistricting

The preceding example demonstrates the feasibility
of using the proposed NMMI to measure compactness
of a CD. Besides this capability, the NMMI measure can
also be applied for designing a better districting plan,
which aims at achieving better compactness in con-
tiguous and equally populous regions. Taking CD1 as
an example, there are two major local population cen-
ters located along its boundary: Janesville near the west
boundary and the one including Oak Creek, Racine,
and Pleasant Prairie along the east boundary. Due to
this east—west dispersed distribution pattern, the com-
pactness value is very low for District 1 even though it
has a compact shape (NMI yields to 0.9).

Adjusting the geographical boundaries according to
its population distribution and the NMMI measure,
a better plan might be generated. Figure 8 shows op-
tional region partition plans by removing the Janesville
area (crosshatch region in black) of 63,532 people
from District 1 and adding either of the two candi-
date subregions—Waukesha (with a red boundary in
Figure 8) and New Berlin (with a green boundary in
Figure 8)—in attempting to satisfy the equal popula-
tion requirement. The two candidate plans, which we
called the Waukesha plan and the New Berlin plan,
are demonstrated in Figure 9. Both subregions are “bor-
rowed” from District 5, the neighbor of District 1 to
the north. The purpose of generating new plans is to

improve the mass compactness of this district by making
the highly dense area within the district closer instead
of diffused.

Both the NMI and NMMI are applied on the can-
didate districts, and the results were compared with
the original plan. For the pure shape compactness mea-
sure, the NMI, the Waukesha plan yields a compactness
value of 0.71 and the New Berlin plan yields a compact-
ness value of 0.75, both slightly smaller than that of the
original plan (0.77). In terms of merely the shape, both
plans would not be favorable because they make Dis-
trict 1 less compact. It does compact the district’s pop-
ulation, however. The NMMI for the Waukesha plan
is 0.21 and the NMMI for the New Berlin plan is 0.22,
and these plans introduce a 30 percent and 35 percent
increase to the NMMI of the original plan, respectively.
Although both candidates’ plans tend to include more
concentrated population on the east side of the district,
the higher value that the New Berlin plan obtains com-
pared to the Waukesha plan makes sense because the
New Berlin plan makes the cluster pattern more obvi-
ous than the Waukesha plan, which adds a population
center a bit further to the existing population center in
the east.

Through the preceding analysis, we found that both
candidate plans obtained using the NMMI measure are
potentially better plans than the original partition. Un-
doubtedly, borrowing subregions from District 5 will
lead to a population decrease for that region and repar-
titioning of one CD always involves the repartition-
ing of all adjacent districts. The repartitioning process
is actually a redistricting and regionalization problem
(W. Li, Church, and Goodchild 2014a). Our aim is to
demonstrate that integrating the NMMI compactness
measure into the redistricting process has the potential
of yielding results that satisfy the equal population ob-
jective and at the same time are more compact to avoid
gerrymandering.

Conclusion and Future Work

This article reports our contribution to developing a
new areal unit pattern measure, the NMMI, based on
MMI for discerning the concentration or the diffusion
pattern of a continuous attribute on an areal feature.
The motivation for this work comes from the effec-
tive yet limited function provided by the NMI (W. Li
et al. 2013), which assumes the even distribution of a
property on a shape. Using the proposed measure for
assessing compactness has the following advantages.
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This measure integrates both geometry and nonspa-
tial attributes into the assessment of spatial compactness
patterns, thereby enhancing traditional nonspatial sta-
tistical analysis tools by incorporating geometry infor-
mation and existing shape analysis tools by integrating
distribution pattern of some attribute. As the NMMI in
essence measures the dispersion of basic elements dis-
tributed on an areal shape, it becomes especially useful
for applications in which compact activities or compact
interactions are desired.

Although different in mathematical formulation,
the computation of the NMMI inherits and carries
the strength of the computation of the NMI. First, the
NMMI is computationally efficient. Its efficiency lies in
the additive nature of Newton’s law of inertia (Earman
and Friedman 1973), from which both measures are
derived. When the shape of a spatial object changes
(i.e., including a new subarea or removing an existing
subarea), there is no need to recompute the compact-
ness of all the subareas that make up the shape. Only
the MI of subarea, the original shape, and the change of
MI brought by merging or removing the subarea need to
be computed. Furthermore, the NMMI is robust toward
positioning errors of the vertices on the boundary of a
spatial object, preventing errors from data uncertainty,
which is unavoidable in practice. The NMMI is also
able to take both vector and raster data as input for
analyzing the compactness pattern. This capability
allows the widespread adoption of the NMMI ap-
proach, such as census-related analysis in which vector
data are more often used or ecological applications in
which raster data are the major data source. Finally,
the NMMI is able to handle a shape that has holes
or islands, such as the basswood island in Wisconsin
CD7.

Future efforts will involve distributing open source
code to the geography community. We will further
improve the algorithm to integrate real transportation
networks into the analysis, such that the straight-line
distance between each element pair used in the
computation can be replaced by the network distance,
either the shortest path or the quickest path according
to different application needs. We will also investigate
the applicability of the proposed mass compactness
measure in a special area of spatial pattern analysis,
landscape pattern analysis, in which most pattern
measures still use statistical tools that ignore the shape
of spatial features or only basic shape factors, such as
the area perimeter ratio in the FRAGSTATS tool
(McGarigal and Marks 1995).
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Note

1. A unit shape is represented as a polygon and unit shapes
could be different, and the mass is evenly distributed on a
unit shape.
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