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Traditional gazetteers are built and maintained by authoritative mapping agencies. In the age of Big Data,
it is possible to construct gazetteers in a data-driven approach by mining rich volunteered geographic
information (VGI) from the Web. In this research, we build a scalable distributed platform and a high-
performance geoprocessing workflow based on the Hadoop ecosystem to harvest crowd-sourced
gazetteer entries. Using experiments based on geotagged datasets in Flickr, we find that the
MapReduce-based workflow running on the spatially enabled Hadoop cluster can reduce the processing
time compared with traditional desktop-based operations by an order of magnitude. We demonstrate
how to use such a novel spatial-computing infrastructure to facilitate gazetteer research. In addition,
we introduce a provenance-based trust model for quality assurance. This work offers new insights on

enriching future gazetteers with the use of Hadoop clusters, and makes contributions in connecting
GIS to the cloud computing environment for the next frontier of Big Geo-Data analytics.
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1. Introduction

Place is a fundamental concept in daily life and reflects the way
humans perceive, experience and understand their environment
(Tuan, 1977). Place names are pervasive in human discourse, doc-
uments, and social media when location needs to be specified and
referred to. Digital gazetteers are dictionaries of georeferenced
place names, and play an important role in geographic information
retrieval (GIR), in digital library services, and in systems for spatio-
temporal knowledge organization (Hill, 2006; Goodchild & Hill,
2008; Li, Yang, & Zhou, 2008; Li, Raskin, & Goodchild, 2012).
Several well-known authoritative digital gazetteers have been
developed such as the Alexandria digital library (ADL) gazetteer
at the University of California Santa Barbara (Goodchild, 2004; Hill,
Frew, & Zheng, 1999), the Getty Thesaurus of Geographical Names
(TGN) at the Getty Research Institute, the gazetteer maintained by
the US Board on Geographic Names (BGN), and a Chinese gazetteer,
KIDGS, at Peking University (Liu, Li, et al., 2009). Such authoritative
projects require expert teams to make lengthy efforts and the
maintenance costs are high, thus often leading to lengthy delays
in updating the databases.
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With the emergence of the social Web, new forms of crowd-
sourced gazetteers have become possible. They can be categorized
in two types. One is collaborative mapping platforms, such as Wik-
imapia' and OpenStreetMap (OSM),? in which volunteers create and
contribute geographic features and detailed descriptions to websites
where the entries are synthesized into databases. The other way is
socially constructed place, that is, gazetteer entries constructed from
the Web documents and diverse social-media sources (such as
Facebook, Twitter, Foursquare, Yelp, and Flickr) where the general
public uses place names, describes sense of place, and makes diverse
comments according to their experiences (Goldberg, Wilson, &
Knoblock, 2009; Jones, Purves, Clough, & Joho, 2008; Li, Goodchild,
& Xu, 2013; Uryupina, 2003). Note that the term gazetteer in this
paper also includes point of interest (POI) databases such that the
P stands for place not point. By mining such rich resources, it is
possible to construct or enrich gazetteers in a bottom-up approach
instead of in a traditional top-down approach (Adams & Janowicz,
2012; Adams & McKenzie, 2013). However, the data mining and
harvesting processes are computationally intensive. Especially in
the age of Big Data, the volume, the updating velocity, and the
variety of data are too big, too fast and too (semantically and
syntactically) diverse for existing tools to process (Madden, 2012).

T http://www.wikimapia.org.
2 http://www.openstreetmap.org.
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In the GIScience/GIS community, researchers may not be willing to
wait for weeks or longer to process the terabyte or petabyte-scale
geotagged data streams. Fortunately the emerging cloud-computing
technologies offer scalable solutions for some of the processing prob-
lems in Big Data Analytics.

In this research, we present a novel approach to harvest crowd-
sourced gazetteer entries from social media and to conduct high-
performance spatial analysis in a cloud-computing environment.
The main contribution of this paper is two-folds: First, it introduces
the design and implementation of a scalable distributed-platform
based on Hadoop for processing Big Geo-Data and facilitating the
development of crowd-sourced gazetteers. Second, it provides
valuable demonstrations about how to efficiently extract multiple
feature types of gazetteer entries at multiple scales and how to
integrate emerging data and technologies to improve GIScience
research.

The rest of the paper is organized as follows. In Section 2, we
introduce some relevant work about space and place, gazetteers,
VGI, and Big Data, as well as cloud-computing infrastructures, to
help understand the challenges involved in the presented research.
In Section 3, we design and implement a novel Hadoop-based
geoprocessing platform for mining, storing, analyzing, and visual-
izing crowd-sourced gazetteer entries; this is followed by experi-
ments and results, as well as a trust evaluation in Section 4. We
conclude the paper with discussions and directions for future
research (Section 5).

2. Related work

In this section we briefly point to related work and background
material.

2.1. Space and place

Space and place are two fundamental concepts in geography,
and more broadly in the social sciences, the humanities, and infor-
mation science (Agnew, 2011; Goodchild, 2011; Goodchild &
Janelle, 2004; Harrison & Dourish, 1996; Hubbard, Kitchin, &
Valentine, 2004; Tuan, 1977). The spatial perspective is studied
based on geometric reference systems that include coordinates,
distances, topology, and directions; while the alternative “platial”
(based on place) perspective is usually defined by textual place
names, linguistic descriptions, and the semantic relationships
between places (Gao, Janowicz, McKenzie, & Li, 2013; Goodchild
& Li, 2012a; Janowicz, 2009). There would not be any places with-
out people’s perception and cognition. As argued by Tuan (1977),
it is humans’ interactions and experiences that turn space into
place. Place is not just a thing in the world but a social and cul-
tural way of understanding the world. Giving names and descrip-
tions to locations is a process to make space meaningful as place.
Social-tagging, tweets, photo sharing, and geo-social check-in
behaviors have created a large volume of place descriptions on
the Web.

Researchers have made significant efforts toward georeferenc-
ing place descriptions and processing spatial queries, such as using
ontologies of place (Jones, Alani, & Tudhope, 2001), using a qualita-
tive spatial reasoning framework (Yao & Thill, 2006), using fuzzy
objects (Montello, Goodchild, Gottsegen, & Fohl, 2003), using
probability models in combination with uncertainty (Guo, Liu, &
Wieczorek, 2008; Liu, Guo, Wieczorek, & Goodchild, 2009), using
kernel-density estimation (Jones et al., 2008), using description
logics (Bernad, Bobed, Mena, & Ilarri, 2013), as well as knowledge
discovery from data techniques for platial search (Adams &
McKenzie, 2012). Recently, a review by Vasardani, Winter, and
Richter (2013) has suggested that a synthesis approach would

provide improvements in locating place descriptions, and that
new opportunities exist in identifying places from public media
and volunteered sources by using Web-harvesting techniques.

2.2. Gazetteers

Existing GIS and spatial databases are mature in representing
space, but limited in representing place. In order to locate place
names on a map with precise coordinates and to support GIR, ef-
forts have been taken to convert place to space. One major mech-
anism is the use of gazetteers, which conventionally contain three
core elements: place names (N), feature types (T), and footprints
(F) (Hill, 2000). A place name is what people search for if they
intend to learn about a place, especially its location, in a gazetteer.
A place type is a category picked from a feature-type thesaurus for
classifying similar places into groups according to explicit or impli-
cit criteria. Janowicz and KeRler (2008) argued that an ontological
approach to defining type classifications will better support gazet-
teer services, semantic interoperability (Harvey, Kuhn, Pundt,
Bishr, & Riedemann, 1999; Scheider, 2012), and semi-automated
feature annotation. A footprint is the location of a place, and is
almost always stored as a single point which represents an
extended object as an estimated center, or the mouth in the case
of a river. Recent work is providing additional spatial footprints
including polygons and part-of relations.

One major role of a gazetteer is thus to link place names to loca-
tion coordinates. For example, the ADL model which links places to
spatially defined digital library resources requires a comprehensive
gazetteer as part of its spatial query function to provide access to
web services, including collections of georeferenced photographs,
reports relating to specific areas, news and stories about places,
remote sensing images, or even music (Goodchild, 2004). The min-
imum required elements of a place in ADL model are represented
by the triples (N,T,F). As a start, ADL combines two databases:
the Geographic Names Information System (GNIS) and the
Geographic Names Processing System (GNPS), both from US fed-
eral-government agencies. Frequently, it is necessary to consult
and combine results from multiple gazetteer sources, which is gen-
erally described as (feature) conflation (Saalfeld, 1988). Hastings
(2008) has proposed a computational framework for automated
conflation of digital gazetteers based on three types of similarity
metrics: geospatial, geotaxial, and geonomial. In addition, efforts
have been made in mining gazetteers semi-automatically from
the Web (e.g., Goldberg et al., 2009; Uryupina, 2003). Challenges
such as interoperability and quality control need to be investigated
in such crowd-sourced gazetteers. The conflation of POI databases
is widely considered an important next research step to combine
the different attributes stored by various systems to more powerful
joint database.

2.3. Big Data and VGI

Big Data is used to describe the phenomenon that large volumes
of data (including structured, semi-structured, and unstructured
data) on various aspects of the environment and society are being
created by millions of people constantly, in a variety of formats
such as maps, blogs, videos, audios, and photos. Big Data is “big”
not only because it involves a huge amount of data, but also
because of the high dimensionality and inter-linkage of a multi-
tude of (small) datasets that cover multiple perspectives, topics,
and scales (Janowicz, Scheider, Pehle, & Hart, 2012). The Web has
lowered previous barriers to the production, sharing, and retrieval
of varied information linked to places. VGI (Goodchild, 2007), a
type of user-generated content (UGC) with a geospatial compo-
nent, has gradually been taking the lead as the most voluminous
source of geographic data. For example, there were over 20 million
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geographic features in the database of Wikimapia at the time of
writing, which is more than many of the world’s largest gazetteers.
In addition to features with explicit locational information stored
in geodatabases, places are also mentioned and discussed in social
media, blogs, and news forums, etc., but many of the places
referenced in this way do not appear in official gazetteers. This
type of unstructured geographic information is rich and abundant,
with a great potential to benefit scientific research and decision
making.

This phenomenon provides a great potential to advance re-
search on gazetteers. Although gazetteers provide a convenient
way to link place names and locations, there are limitations in
official place descriptions. The intended use of an authoritative
gazetteer is to facilitate communication between government
agencies, so only clearly defined geographic features that are
important for policy making are included, e.g. administrative divi-
sions and boundaries. Some places that are commonly referred to
in daily conversations may not be considered (e.g., coffee shops).
In addition, new place names emerging from popular cultures
cannot be added to an official gazetteer in a timely manner be-
cause it is time-consuming to make changes by holding board
meetings to discuss adjustments. Another missing function of offi-
cial gazetteers is the representation of vague spatial extents of
places. Fortunately, the limitations of official gazetteers might
be partially complemented by integrating new sources based on
VGI. For example, KeRler, Janowicz, and Bishr (2009) have pro-
posed an agenda for an infrastructure of next-generation gazette-
ers which allow bottom-up contributions by incorporating
volunteered data.

2.4. Cloud computing and CyberGIS

Cloud computing services and their distributed deployment
models offer scalable computing paradigms to enable Big Data
processing for scientific researches and applications (Armbrust
et al., 2010; Ostermann et al., 2010), thus offering opportunities
to advance gazetteer research. Some representative cloud sys-
tems and the characteristics of clusters, grids, cloud systems have
been carefully examined by Buyya, Yeo, Venugopal, Broberg, and
Brandic (2009). Cloud services can be categorized into three main
types: infrastructure as a service (laaS), platform as a service
(PaaS) and software as a service (SaaS). laaS, as used in this work,
provides the access to computing hardware, storage, network
components and operating systems through a configurable vir-
tual server. An laaS user can operate the virtual server, install
software tools, configure firewalls, and run model simulations re-
motely as easily as accessing a physical server. More importantly,
it is more convenient for researchers to utilize these scalable
cloud-computing resources with the availability of low-cost, on-
demand laaS such as the Web services of the Amazon elastic com-
puting cloud (AWS EC2) and Amazon simple storage service
(Amazon S3).

In the geospatial research area, cloud computing has attracted
increasing attention as a way of solving data-intensive, comput-
ing-intensive, and access-intensive geospatial problems (Yang,
Goodchild, et al., 2011). For example, in order to enhance the
performance of a gazetteer service, Gao, Yu, Gao, and Sun (2010)
designed a resource-oriented architecture in a cloud-computing
environment to handle multiple levels of place-name queries.
Yang, Wu, Huang, Li, and Li (2011) presented how spatial comput-
ing facilitates fundamental physical science studies with high-
performance computing capabilities. The emerging concept of
CyberGIS, which synthesizes cyberinfrastructure, spatial analysis,
and high-performance computing, provides a promising solution
to aforementioned geospatial problems as a cloud service (Li,

Goodchild, Anselin, & Weber, in press; Wang, 2010; Yang, Raskin,
Goodchild, & Gahegan, 2010). Scalable and efficient geo-processing
is conducted on the high-end computing facilities and released as
standard Web services; a Web portal is provided to Internet users
to interact with the servers, upload/download raw data, perform
analysis, and visualize results. From this perspective, the CyberGIS
gateway can be considered a combination of laaS, PaaS, and SaaS
and its architecture provides guidance for establishing other cloud
geoprocessing platforms. Several works conducted on the CyberGIS
platform for Big Geo-Data analysis are presented in literature. For
instance, Rey, Anselin, Pahle, Kang, and Stephens (2013) discussed
the parallelization of spatial analysis library—PySAL in multiple-
core platforms. Liu and Wang (2014) described the implementa-
tion of a scalable genetic algorithm in HPC clusters for political
redistricting. Wang et al. (2013) reviewed several key CyberGIS
software and tools regarding to the integration roadmap.

There are many Big Data analytics platforms and database sys-
tems emerging in the new era, such as Teradata data warehousing
platform, MongoDB No-SQL database, IBM InfoSphere, HP Vertica,
Red Hat ClusterFS and Apache Hadoop-based systems like Cloudera
and Splunk Hunk. They can be classified into two categories: (1)
the massively parallel processing data warehousing systems like
Teradata are designed for holding large-scale structured data and
support SQL queries; and (2) the distributed file systems like
Apache Hadoop. The advantages of Hadoop-based systems mainly
lie in its high flexibility, scalability, low-cost, and reliability for
managing and efficiently processing a large volume of structured
and unstructured datasets, as well as providing job schedules for
balancing data, resource and task loads. A MapReduce paradigm
(more details in Section 3) implemented on Hadoop helps shift
processing jobs to other connected nodes if one fails, such that it
is inherently fault-tolerance. Compared with parallel relational-
database-management-systems (DBMS) which perform excellently
in executing a variety of data-intensive query processing bench-
mark (Pavlo et al., 2009), the Hadoop ecosystem is more optimized
for computationally intensive operations such as geometric com-
putations (Aji et al., 2013). However, such platforms have not been
utilized thoroughly to process crowd-sourced Big Geo-Data, and
little research has been conducted to construct gazetteers using
such advanced cloud-computing platforms. In this research, we
present how to build a scalable platform in detail to harvest and
analyze crowd-sourced gazetteer entries based on the geoprocess-
ing-enabled Hadoop ecosystem (GPHadoop).

3. The Hadoop-based processing platform

In this section we discuss the role and setup of Hadoop for the
presented research.

3.1. System architecture

The goal of this processing platform is to provide a scalable, reli-
able, and distributed environment for mining, storing, analyzing,
and visualizing gazetteer entries extracted from various Web re-
sources (e.g., semi-structured geotagged data or unstructured doc-
uments). The system should also have the capability of processing
geospatial data and an easy-to-use, configurable user interface to
submit processing jobs and to monitor the status of the system.
The open-source Hadoop is an ideal choice, since it provides a dis-
tributed file system and a scalable computation framework by par-
titioning computation processes across many host servers which
are not necessary high-performance computers (White, 2012).
More importantly, the move-code-to-data philosophy which ap-
plies within the Hadoop ecosystem will improve the efficiency
since it usually takes more time to move voluminous data across

ban Systems (2014), http://dx.doi.org/10.1016/j.compenvurbsys.2014.02.004
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a network than to apply the computation code to them. However,
raw Hadoop-based systems usually lack powerful statistics and
visualization tools (Madden, 2012). Therefore, we cannot use the
raw Hadoop Cluster directly for Big Geo-Data analytics. Alterna-
tively, we integrate the recently released Esri Geometry APIs® to
spatially enable the Hadoop cluster for scalable processing of geotag-
ged data from VGI sites and automatically link the results to an Arc-
GIS Desktop for visualization.

Fig. 1 demonstrates the system architecture of our Hadoop-
based distributed geoprocessing platform (GPHadoop). It is com-
posed of four modules: a Web crawler, a Hadoop cluster, a user
interface supported by Cloudera and a GIS client.

(1) The Web crawler is a search engine written in Python to
download place data from the Web and store them on the server.
The Web crawler can process two types of data streams:
unstructured textual place descriptions from Web documents
or semi-structured data extracted from social media, e.g.,
Twitter’s geotagged tweets and Flickr’s geotagged photos.* Note
that pre-processing and filtering (such as removing invalid coordi-
nates) is necessary.

(2) The Hadoop Cluster is the corpus of all server nodes within a
group (their physical locations can differ) on Hadoop. Two Hadoop
components - the Hadoop distributed file system (HDFS) and the
MapReduce programming model - are implemented on our plat-
form. HDFS is a distributed storage system for reliably storing
and streaming petabytes of both unstructured and structured data
on clusters (Shvachko, Kuang, Radia, & Chansler, 2010). HDFS has
three classes of nodes in each cluster:

e Name node: responsible for managing the whole HDFS metadata
like permissions, modification and access times, namespace and
disk space quotas. The most important role is to support the
Web-HDFS access from the client via the cluster’s public host-
name, e.g. namenode.geog.ucsb.edu.

3 https://github.com/Esri/geometry-api-java.
4 http://www.flickr.com/services/api.

e Secondary name node: responsible for checking the name node’s
persistent status and periodically downloading current name-
node image and log files; it cannot play the role of the primary
name node.

e Data nodes: responsible for storing the unstructured file data or
other structured data such as spreadsheets, XML files, and tab-
separated-value files (TSV) in which the geotagged datasets
have been stored. HDFS stores these files as a series of blocks
(the unit of storage), each of which is by default 64 MB (or
128 MB) in size.

The MapReduce programming model is implemented on our
platform for simplified processing of large Web datasets with a
parallel, distributed algorithm on the Hadoop cluster (Dean &
Ghemawat, 2008). Using MapReduce, a processing task is decom-
posed into map® and reduce sub-processes. In the map procedure,
the name-node server divides the input into smaller sub-problems
by generating intermediate key/value pairs and distributes them to
data-nodes for solving sub-problems, while the reduce procedure
merges all intermediate values associated with the same key, and
passes the answer back to its master name node.

In crowd-sourced gazetteers, processing text-based place
descriptions is a computation-intensive procedure. For example,
in order to identify how people are most likely to describe the
characteristics of a place (e.g., the city of Paris), we need to calcu-
late and rank the co-occurrence of tags that include the keyword of
place name (e.g. Paris) across multiple documents. The MapReduce
model can help to speed up this process. In the Algorithm 1, the
Mapper function distributes the task of looping all the documents
for calculating the co-occurrence frequency of words over multiple
nodes and then the Reducer function will combine the results from
all distributed nodes when they finish the parallel calculation. By
using this algorithm, the most popular words to describe a place
can be identified very quickly.

5 Note that the term “map” denotes a particular kind of function in MapReduce
programming model.
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Algorithm 1. The MapReduce algorithm of the co-occurrence
words counting.

Input: A place name of interest P and a set of textual
documents or semi-structure files which contain place
descriptions

Output: A list of words co-occurrence counting [<P,
wordToken>, frequency]

[+ The Map Procedure x/

Mapper(String P, String filename);

List<String> T = Tokenize(filename);

forall the wordToken € T do
forall the each row € filename do

[+ Determine whether the words co-occur with P in each
recordx/
if (both wordToken and P in row) then
emit (String wordToken, Integer 1);
end
end

end

/* The Reduce procedure x/

Reducer(String wordToken, List<Integer> values)

forall the wordToken € T do
Integer frequency = 0O;

[+xSum all key/values from distributed nodesx/
forall the value € values do
frequency = frequency + value;
end
emit (String wordToken, Integer frequency);
end
return <P,wordToken> frequency

In addition, in order to enable spatial-analysis functions on Hadoop,
the Hadoop core is extended to handle geometric features and oper-
ations. We choose Esri’s open source geometry library because of its
popularity in GIS and as a reliable framework in the whole ecosys-
tem (more detailed information in Section 3.2).

(3) Cloudera Manager Web User Interface (CMWebUI): Cloun-
dera Manager® is an industry standardized administration package

% Download at http://www.cloudera.com.

for the Hadoop ecosystem. With CMWebUI, we can deploy and
centrally operate the Hadoop infrastructures. In addition, it gives
us a cluster-wide, real-time view of nodes and monitors the running
services, and enables configuration changes across the cluster. Fig. 2
shows its Web user interface.

(4) The GIS client supports the geo-visualization of MapReduce
operation results transmitted from the Hadoop cluster and built-in
geoprocessing models. By enabling HDFS related tools, it also sup-
ports converting map features (points, polylines, polygons) into
Hadoop-supported data formats for further spatial operations.

3.2. Enabling spatial analysis on Hadoop

First, since HDFS cannot directly support the standard GIS data
formats, e.g., Esri shapefiles, we need to store the geospatial data in
a different way. GeoJSON’ is an open format for encoding simple
geometry features (points, polylines, polygons, and collections of
these types) along with their non-spatial attributes. It is an extension
of the JavaScript-Object-Notation (JSON) format which is often used
for serializing and transmitting structured data over a network con-
nection and meets the HDFS requirements. Both of the spatial and
attribute information are stored in plain text as below:

GeoJSON file examples:
{“type”: “Feature”,
“geometry”:
“type”: “LineString”,
“coordinates”: [[-122.52,37.71], [-103.23,41.52],
[-95.86,43.13],...... I
“fields”: {
“prop1”: “value”,
“prop2”: “string”}
}

Next, we incorporate the GIS tools for Hadoop that have been
released on the open-source project site Github,® which provides
an open-source toolkit for Big Spatial Data Analytics powered by Esri
and was released in March 2013. We integrate two types of Esri
toolkits on Hadoop to handle spatial data: Geometry API for Java

7 http://www.geojson.org.
8 http://esri.github.io/gis-tools-for-hadoop.
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and Geoprocessing Tools for Hadoop. On the server side, the Geometry
API is a generic library that supports geometry types and basic
spatial operations and will allow us to build the MapReduce model
for parallel processing of gazetteer entries (including such operations
as spatial filter and spatial join). Table 1 lists the spatial relationship
analysis and operations that the existing toolkit supports.

The MapReduce algorithm for spatial joins based on the Esri
Geometry library and the Hadoop system is demonstrated in Algo-
rithm 2. This algorithm is important to analyze the spatial distribu-
tion of extracted gazetteer entries and to assign them to the
administrative boundaries of places. A spatial join involves match-
ing attribute information from the join feature to the target feature
based on their spatial relationships. The spatial join usually builds
on sequentially identifying the spatial relationship between two
input features. However, with the help of MapReduce model, this
operation can be deployed in the parallel environment. There are
two specified functions for the implementation of MapReduce-
based spatial join on HDFS:

The Mapper function splits the target feature (e.g., a polygon rep-
resenting a US state) into different keys, i.e. the unique identifier (e.
g., the state name). Then, it performs the sub-process of determin-
ing whether the target feature contains the join feature, and assigns
a key/value (e.g., state name/counts of points inside). Note not only
that the target feature has been split into different keys but also that
the join features can be divided into small blocks on HDFS for par-
allel computation to improve operational efficiency.

The Reducer function performs a summary operation (e.g.,
counting joined point features to each polygon) by aggregating
the key/values produced by the Mapper.

Algorithm 2. The MapReduce algorithm of spatial join operation.

/* Example of spatially join points to polygons x/
Input: A set of point files PF and a target JSON file of polygon T
Output: A list of [PolygonID, ContainedPointIDs] and the count
of points in each polygon
polygonFeature = EsriFeatureClass.fromJson(T);
List<String> PolygonKey = Tokenize(polygonFeature);
List<String> PointID = Tokenize(PF);
/* The Map Procedure */
Mapper(Key PolygonKey, String PF)
forall the each row € PF do
Geometry point = new Point(longitude, latitude);
[+Judge spatial relationsx/
if (GeometryEngine.contains(polygonFeature [PolygonKey],
point, spatialReference) then
emit (String PolygonKey, Integer 1, PointID)
end
end
[+ The Reduce procedure x*/
Reducer(String PolygonKey, List<Integer> values, List<String>
PointIDs)
forall the PolygonKey € T do
Integer count = 0;
|xAggregate all key/values from distributed nodesx/
forall the value € values do
count = count + value;
end
emit (String PolygonKey, Integer count);
end
[+ Optional for appending attributes x/
forall the point € PointIDs do
polygonFeature[PolygonKey].attributes.get(point.attributes)
end
return PolygonKeys, ContainedPointIDs, counts

Table 1
The Esri Geometry API supported functions.

Relationship
analysis
Spatial operations

Equals, disjoint, touches, crosses, within, contains,
overlaps
Buffer, clip, convexhull, intersect, union, difference

3.3. A new geoprocessing workflow for Hadoop

The Hadoop ecosystem lacks a tool to visualize the geospatial
footprints of gazetteer entries. An intuitive way is to send the oper-
ation results back from the HDFS server to a GIS client such as Arc-
Map. In addition, the ArcMap software provides hundreds of
spatial analysis tools for discovering patterns hidden in the geospa-
tial data. The recently released toolkit Geoprocessing Tools for
Hadoop® established the connection between the ArcGIS environ-
ment and the Hadoop system. In our implementation, these tools
are used for further analyzing and visualizing the gazetteer entries
extracted from the Hadoop system. More importantly, scalable geo-
processing workflows can be created by linking the Hadoop related
functions with GIS tools. For example, Fig. 3 presents a geoprocess-
ing workflow running on ArcGIS to submit a MapReduce job for
the spatial-join operation (points in polygons) on Hadoop. The main
procedures are described as follows:

(1) Features to JSON: Convert the target polygon features from
standard ArcGIS format (shapefile) into the GeoJSON format.

(2) Copy data to HDFS: Transmit the polygon’s GeoJSON file based
on the WebHDFS mechanism, which uses the standard Hyper-
Text Transfer Protocol (HTTP) to support all HDFS user opera-
tions including reading files, writing data to files, creating
directories, and so on. The user needs permission to access
the Hadoop Namenode host server and to operate the HDFS.

(3) Execute workflow: This tool needs an Oozie'® Web URL within
the Hadoop cluster and an input file that describes the
Hadoop Oozie job properties, including the user name, the
job-tracker information; and the directories of input features,
output features, and the supported library of operations (i.e.,
the Esri Geometry API for Java package in this case).

(4) Copy results from HDFS: It transmits the output of aggregat-
ing key/value pairs (e.g., counts of points in each polygon)
of the MapReduce operation from the Hadoop server to the
GIS client.

(5) Join field: It integrates a GIS function “Join” to append the
MapReduce processing results to the target features by
matching the key field (e.g., the name of each polygon). As
the output of this geoprocessing workflow the aggregated
features will be automatically added to display in the ArcGIS
environment.

The geoprocessing workflow of spatial join for Hadoop facili-
tates fast processing and statistics of gazetteer entries. Enabled
by this new distributed geoprocessing framework, other computa-
tionally intensive spatial analysis tasks can be substantially
speeded up, after being decomposed into sub-processes according
to the MapReduce paradigm.

4. Experiments and results

In this section we apply the methods introduced above to ex-
tract gazetteer entries from the geotagged data in Flickr. First, we

® https://github.com/Esri/geoprocessing-tools-for-hadoop.

10 Qozie job workflow is a collection of actions (i.e. MapReduce jobs, Pig jobs)
arranged on Hadoop system and allows one to combine multiple jobs into a logical
unit of work.
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Fig. 3. The geoprocessing workflow running on ArcGIS to submit a MapReduce job of the spatial-join operation on Hadoop.

Table 2

The metadata structure and an example of Flickr geotagged data.
PhotolD 5326171618
Title DSCN41
Description Santa Barbara Wharf

Tags California, CA, trip, sea, USA, pier, sunset, seafood

Taken time 12/30/2010 10:39
Uploaded time 1/4/2011 20:22
Latitude 34.4101
Longitude —119.6856
UserID 57900412

extract prominent feature-types using the scalable geoprocessing
workflow based on Hadoop. Then, we illustrate how to harvest dif-
ferent geometric types of specified gazetteer entries.

4.1. Datasets and Hadoop cluster

A Web crawler was used to collect the geotagged data and store
them on HDFS as one type of volunteered gazetteer source. In total,
we collected 5,319,623 records within the bounding box of the
contiguous US. The photos were either georeferenced by built-in
GPS in cameras or manually georeferenced by a user who identified
the photo location on the Flickr website. The location could either
be the place where a photo was taken or the location of an object in
the photo. Automatic recording by a GPS receiver always results in
the former case, while manually georeferenced photos could be
either way. The Photo metadata includes photo ID, title, descrip-
tion, tags, time when a photo was taken and uploaded, latitude
and longitude, as well as lineage information about the users
who uploaded the picture (Table 2).

Table 3
The roles of 10 distributed servers connected on the Hadoop cluster.
Name (count of Roles Location Server info
servers)
UCSBMasterNode (1) Namenode, HDFS, MapReduce, JobTraker Santa CentOS 5.8, 64 bit, 7.8 GB memory, 3.6 GHz processor, 2 TB storage
Barbara
ASUDataNode (1) Secondary Namenode, Datanode, HDFS, Phoenix CentOS 6.4, 64 bit, 5 GB memory, 2.4 GHz processor, 320 GB storage
TaskTraker
EC2-RedHat (1) Datanode, HDFS, TaskTraker Oregon CentOS 6.4, 64 bit, 7.5 GB memory, 2.4 GHz processor, 420 GB storage
EC2-Ubuntu (7) Datanode, HDFS, TaskTraker Oregon Ubuntu 12.04, 64 bit, 7.5 GB memory, 2.4 GHz processor, 420 GB
storage
Table 4
Extracting and analyzing place types from photo tags at different scales.
Feature types Keywords Records # State # County # ZIP
Parks Park, 2A[@ (Chinese), parc (French), parquet (Spanish) 229,694 4688 per state 145 per county 33 per ZIP
49 states 1580 counties 7042 ZIPs
Schools School, university 112,885 2304 per state 109 per county 32 per ZIP
49 states 1036 counties 3500 ZIPs
Museums Museum 65,695 1341 per state 91 per county 39 per ZIP
49 states 722 counties 1706 ZIPs
Coffee shops Coffee, cafe, coffeehouse, coffeebar, starbucks 19,523 398 per state 25 per county 7 per ZIP
49 states 788 counties 2643 ZIPs
Streets Street, road, blvd, freeway, highway 181,410 3702 per state 92 per county 6 per ZIP
49 states 1980 counties 31,941 ZIPs
Rivers River, watershed 45,252 924 per state 37 per county 14 per ZIP
49 states 1217 counties 3371 ZIPs
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Table 5
The harvested different geometry types (point, polyline, polygon) of crowd-sourced gazetteer entries.
Place names Geographic footprints Place descriptions (top 10 ranked tags) Provenances (only list the number
of contributors here)
Santa Barbara Courthouse {Point:[GeoJSON]} Santa Barbara courthouse California county palm 81 points from 22 trusted UserIDs
trees view historical architecture
California State Route 1 {Line: [GeoJSON]} Highway1 California Sanfrancisco bigsur motorcycleride 427 points 59 trusted UserIDs
hearstcastle beach ocean coast USA
Harvard University {Polygon:[GeoJSON]} Harvard University Cambridge USA Boston Massachusetts 637 points from 176 trusted UserIDs

Square Harvard-Westlake Flintridge Sacred

Fig. 4. The spatial distributions of geotagged points annotated with these feature types: (A) parks; (B) schools; (C) museums; (D) coffee shops; (E) streets; (F) rivers.

Based on the system architecture introduced above, on the ser-
ver side, we built a Hadoop cluster by installing, deploying, and
configuring the Cloudera Hadoop packages (CDH Version 4.0) on
each distributed server and assigning different roles Namenode,

Datandoe, HDFS services, MapReduce services, jobTracker and taskT-
raker to them (Table 3). The chief merits of such a Hadoop ecosys-
tem derive from its robustness and scalability at a low cost, by
employing multiple normal computer servers instead of a single

ban Systems (2014), http://dx.doi.org/10.1016/j.compenvurbsys.2014.02.004
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Fig. 5. The results of spatial join workflow based on Hadoop for parks: (A) by US states; (B) by US counties; (C) by US ZIP codes; (D) by US census tracts. Source: basemaps are

provided by Esri.

high-performance cluster. In addition, the system architecture is so
flexible that the CDH packages can be deployed either on our local
servers in different physical locations or on Amazon EC2 instances
as virtual servers.

4.2. Extracting multi-scale spatial distributions of place types

While authoritative gazetteers provide good quality for long-
term administrative place types such as countries, cities, and
towns, the crowd-sourced gazetteers could contribute small-scale
place types such as restaurants and coffee shops. In order to dem-
onstrate the performance of the new geoprocessing workflow for
Hadoop introduced in Section 3.3, we extract and analyze the spa-
tial distribution of some prominent place types (Table 4) in the US,
including parks, schools, museums, coffee shops, streets, and riv-
ers. Their frequencies of occurrence are high enough in the tags
for a reliable extraction.

After loading the extracted text files of feature types on HDFS
according to their keywords (listed in Table 5), we can visualize
the geographic footprints of place types and obtain statistical infor-
mation by running the geoprocessing workflow of spatial joins for
Hadoop. The spatial distributions of geotagged points annotated
with these feature types in the map extent of the continuous US
are shown in Fig. 4. It gives a sense of spatial context for these

place types and needs to zoom in the map for exploring more de-
tailed place information in a GIS environment. Named-entity rec-
ognition (NER) techniques can be used to further extract place
entities. As we know, places are hierarchically organized. Spatial
joins can also help to assign the hierarchical names of different
geopolitical divisions (such as states, counties, and ZIP code re-
gions) to each gazetteer entry. Table 4 presents a summary of the
operational results.

By comparing the computation time of Hadoop-based spatial
join operations with that of single desktop PC-based spatial join
procedures running on a modern laptop with 64-bit operating sys-
tem, 2.5 GHz Intel-dual-core processors, and 4 GB instant memory,
as shown in Fig. 6(A), we find that the MapReduce-based workflow
running on our Hadoop cluster can reduce computing time by an
order of magnitude when the number of submitted geotagged
points for each place types is sufficiently large (e.g., we saved about
73% of the computing time for 100,000 points). Interestingly the
performance of 10 nodes compared with that of 4 nodes on the
Hadoop cluster has a comparatively small effect. If we increase
the number of target polygons, the Hadoop-based aggregation
reduces about half of the time and this is most likely because of
the difference in memory (RAM). A specific example of spatially
aggregating the 229,694 geotagged points of parks to different
granularities of US census units - states (51 polygons), counties
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(3143 polygons), ZIP code regions (32,086 polygons), and census
tracts (72,851 polygons) - is shown in Fig. 5. The computation time
curves are depicted in Fig. 6(B). Note that we only connected a rel-
atively small numbers of (four and ten) servers connected to the
Hadoop cluster so far, and that higher computation efficiency
might be achieved by adding more data nodes equipped with HDFS
and task-Trackers. However, Hadoop-based systems often encoun-
ter a disk bottleneck in reading data from the network (I0-bound)
or in processing data (CPU-bound). An optimized configuration of
the Hadoop cluster could improve the cloud computing perfor-
mance but is not within the scope of this paper; see Kambatla,
Pathak, and Pucha (2009) for more details. Using this example,
we demonstrated the high performance of the new scalable geo-
processing workflow based on the MapReduce model and how to
derive feature-type-based gazetteer entries inside administrative
polygons with GIS tools for Hadoop.

4.3. Harvesting gazetteer entries

The results of place-type-based processing give an overview of
the spatial distributions of geotagged points. In order to extract full
gazetteer entries, place names, geographic footprints, and feature
type descriptions, as well as provenance information are needed.
As discussed in Section 2.1, place is a social concept that is per-
ceived and recognized by human beings; therefore, the provenance
information about the group of people who identify place is as
important as the traditional elements (name, feature type, and
footprint). As argued by Goodchild and Li (2012a), the current rep-
resentation of place entries in a gazetteer independent of the users
should be complemented by another element of source. It helps re-
veal the binary relationship between a place and its contributors, i.
e., to know not only where a place is and how it is referred-to, but
also who refers to it in this way. The provenance of gazetteer en-
tries would enhance research on social perception of places be-
cause the same (or similar) location may be named differently by
different groups of people instead of the traditional unary form that
only links the place and its official name.
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In the following, we illustrate the construction processes for
retrieving different geometric (point, polyline, polygon) gazetteer
entries annotated with Santa Barbara Courthouse, California State
Route 1 (SR1 or Highway1), and Harvard University. Table 5 pre-
sents the summary of harvested crowd-sourced gazetteer entries
with the given keywords. The geographic footprints and place
descriptions were extracted from the GPS locations and the tags that
were given to a place. The provenance information was derived from
the users who contributed the geotagged photos to a given place.
The collected provenance information from users will help to fur-
ther validate extracted entries based on quality assurance methods
as well as trust model (more details are provided in Section 4.4).

Santa Barbara Courthouse, located at downtown Santa Barbara,
is a local historic landmark and famous for its architecture and the
panoramic view of the city. It is better to take it as a point gazetteer
entry although multiple geotagged-photo points are extracted and
most of them distributed around the main building (Fig. 7). We ap-
plied the Standard Deviational Ellipse (SDE) statistical analysis to
identify the significant points, which is more robust to outliers
and could summarize the central tendency and directional trend
of point distributions (Mitchell, 2005). Next, we selected the points
(SPs) contained by the two standard deviation (26-SDE) polygon
which covers approximately 95% of the extracted points. Finally,
a 2c-centroid of SPs in the identified cluster was assigned to the
geographic footprint for this feature. In addition, by counting the
frequency of tags, we perceive that location-context words (Santa
Barbara, California, county), local distinguishing features (palm
trees) and the characteristics of the landmark itself (view, histori-
cal, architecture) are the most frequently used texts to express the
users’ feelings and experiences about a place.

California SR1 is one of the most famous highways along the Pa-
cific Coast in the US. By merging the geotagged points labeled
‘highway1’ or ‘freeway1’ and filtering them by the geographic foot-
print of California, the automatically generated line presents a
good shape of the main SR1 (Fig. 8). A denser spatial and temporal
sampling of geotagged points and more strict algorithms may
provide a better and more complete footprint of the route. More
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Fig. 6. The computation time curves of Hadoop-based spatial joins and a single desktop PC: (A) increasing the number of joined points; (B) increasing the number of target

polygons.
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Fig. 7. The geographic footprint and tag descriptions for Santa Barbara Courthouse: (A) extracted geotagged points for this feature and its 15-centroid (Blue) and 2c-centroid
(Green) with the standard deviational ellipses; (B) a word-cloud visualization of the extracted tags using the Wordle tool. http://www.wordle.net. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. The geographic footprint and tag descriptions for California SR1: (A) the automatically constructed line feature by connecting all points following the longitude
sequence; (B) the California SR1 map from Wikipedia; (C) a word-cloud visualization of the extracted tags using the Wordle tool.

importantly, by exploring the semantic tags, we can derive fruitful
feature attributes and social descriptions for fast updating of road
gazetteer entries. For SR1, we get the information about where the
entry is located (USA, California), the main cities (San Francisco,
Los Angeles) and famous landmarks (Big Sur, Hearst Castle) along
the route, as well as other descriptive characteristics (motorcycle

ride, beach, ocean, coast). This process is unlike traditional auto-
matic road updating techniques with GPS trajectories (Cao &
Krumm, 2009) which only contain the geometry information.

The final example is Harvard University. In crowd-sourced
gazetteers, in order to store the more complete extent of the
university campus, it should be represented as a polygon. As
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shown in Fig. 9(A), the extracted geotagged points labeled with
‘Harvard University’ are distributed among the central campus,
on Harvard Bridge and along other scattered locations. Several
methods have been proposed to generate the polygonal represen-
tation of places from footprint points. For example, kernel-density
estimation has been introduced (e.g., Jones et al., 2008; Li &
Goodchild, 2012) to extract the boundaries of vague places
according to a threshold point density. KeRler, Maué, Heuer, and
Bartoschek (2009) assigned centroid locations to geotags and used
Delaunay triangulation graph to identify clusters in the point
clouds. Liu, Yuan, Xiao, Zhang, and Hu (2010) proposed a point-
set-based-region model to approximate vague area objects.

Here, we introduce a fuzzy-set-based method to extract geo-
graphic footprints of polygonal places. Fuzzy-set-based classifica-
tion and identification methods have been widely used in GIS
and related disciplines (Burrough & Frank, 1996; Cross & Firat,
2000; Montello et al., 2003; Robinson, 2003). The fuzzy set A can
be interpreted as the degree of membership of X in a set; values as-
signed fall within the range [0,1]. Many membership functions to
express the grade of membership of X in a fuzzy set A have been
discussed by Robinson (2003). For the crowd-sourced gazetteer
entries, the geotags of a place generated by users usually follow
a clustering structure, thus we suggest using a distance-decay
function (Leung & Yan, 1997; Taylor, 1971) to measure the mem-
bership of candidate point locations assigned to a place:

1, (0<di<dy)
ﬂ(X) = d%" (d] <dy < dz)
07 (dx = dZ)

where d, is the distance between a candidate point and the centroid
point of the cluster, f is a decay parameter, and C is a parameter to
scale the range of membership scores. We need to set distance
thresholds d; and d,.

To store the spatial footprint of a polygonal gazetteer entry, we
can use the o-cut technique (Robinson, 2003). A crisp set A, con-
tains all elements of X whose membership scores in A, are greater
than or equal to «. The a-cut-boundary of a place can be further de-
rived from the points in A, based on the minimum-enclosing-
geometries, such as the «-cut-minimum-bounding-rectangle, or
the a-cut-convex hull. Here, we set =1, d; =50 m, d, = 5000 m,
and C=5 (note that the parameters might vary at different scales).
Fig. 9(B) and (C) present two different shapes of o-cut-boundaries:
the o-cut-minimum-bounding-rectangle and the o-cut-convex-
hull. All the 0.5-cut-boundaries have a good representation of the
footprint of the northern Harvard campus (not including the south-
ern part separated by the Charles River), while the 0.8-cut-bound-
aries indicate the core attractive areas where the geotagged photos
are taken.

After updating the geographic footprint, we also need to capture
the users’ descriptions about Harvard University. Besides conven-
tional place descriptions that are related to place names and local
landmark characteristics introduced above, the comments with
tags related to events can also be detected. For example, during
the temporal extent of downloaded data, there was a girls’ basket-
ball match between the Flintridge-Sacred-Heart team and the
Harvard-Westlake team hosted at Harvard on January 21, 2011.
Consequently, Flickr users uploaded many geotagged photos with
comments and place descriptions about this particular match. This
is why we get a high frequency of tags: Flintridge-Sacred-Heart
and Harvard-Westlake at Harvard.

4.4. Outlook on the provenance-based trust evaluation

VGI as a data source preserves the semantic diversity in the con-
tributors’ cognition of places. The data are created through a large

volume of voluntary contributions and quality issue has been
widely discussed by the VGI research community. Goodchild and
Li (2012b), for instance, discussed three approaches for the quality
assurance: crowd-sourcing, social, and geographic methods. In the
absence of ground-truth data, several studies have proposed the
use of provenance information to estimate the quality of VGI. For
example, researchers suggested using contributor-associated trust
to measure crowd-sourced data quality. Mooney and Corcoran
(2012) investigated the tagging and annotation of OSM features
using provenance. KeRBler and de Groot (2013) proposed a five-
indicator trustworthiness model as a proxy in the case study of
OSM. The results of an empirical study support the hypothesis that
VGI data quality can be assessed by using a trust model based on
the provenance information.

In this work, we have collected the provenance metadata for
each gazetteer entry, i.e., the contributors, the total number of up-
loaded photos and time-stamps of contributions. Like other crowd-
sourcing platforms, a small number of “active users” share most
contributions which follow a power-law distribution ranked by
the number of uploaded photos (see Fig. 10); only 8% of the total
440,000 contributors have shared more than 10 geotagged photos
by each person in the collected datasets.

In contrast to OSM or Wikipedia, the contributors’ reputation
and trustworthiness cannot be assessed by revisions; in Flickr,
we can only rely on the contributors’ past geotagging and photo
sharing behaviors to establish a user-reputation model: a user i
have reputation value Ry(t) at time t.

B the number of reliable geotagged photos (Nj;)
~ the total amount of photos which a user has uploaded (N;)

* Wrank

Ri(t)

A reliable geotagged photo means that its position accuracy
meets the quality criteria and consists with the geographic knowl-
edge (Goodchild & Li, 2012b). Wiank is @ weighted rank based on to-
tal contribution; the active users who contribute more photos have
higher value of W,,,,. We trust the content generated by high rep-
utation users for crowd-sourced gazetteer construction and enrich-
ment. In addition, for each gazetteer entry, we set up a bottom-line
requirement: with minimum number (15) of contributors and a

45 T T T T T T

25

log10 (number of photos)

0 0.5 1 1.5 2 2.5 3 3.5

log10 (rank)

Fig. 10. The power-law distribution of generated photos by top-ranked users (on
log-log plot).
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minimum number (10) of tag descriptions according to the obser-
vation of overall characteristics in the sample datasets (Table 5).
Further filtering work and recalculation will be processed based
on the contributors reputation scores. We presented an intuitive
way to filter reliable geotagged content. Alternative, more complex
trust models based on the provenance metadata will be addressed
in our future work.

5. Conclusions and future work

In summary, space and place are associated through gazetteers
in a wide variety of geospatial applications. While traditional
gazetteers that are constructed and maintained by official author-
ities lack informal and vernacular places, we demonstrate a Big
Data-driven approach by mining VGI sources to create a crowd-
sourced gazetteer. Three examples of different types (point, poly-
line, polygon) of geographic features are extracted, analyzed and
visualized in this study. We also present a provenance-based user
reputation model for the trust evaluation.

This semi-automatic construction of a crowd-sourced gazetteer
can be facilitated by using high-performance computing resources
because it involves the process of mining large-volumes of geospa-
tial data. We designed and established a Hadoop-based processing
platform (GPHadoop) to show the promise of using VGI and cloud
computing in gazetteer research and GIScience in general. In par-
ticular, our approach has the following merits:

o Using the examples of the spatial join operation to the increas-
ing number of points in different geographic scales, we demon-
strate that the MapReduce-based algorithm has a higher
efficiency to process such Big Geo-Data analysis compared to
a traditional desktop PC-based analysis.

The MapReduce algorithm of counting co-occurrence words
makes it possible to rapidly extract parts of a place semantics
and popular tags to characterize a place.

The platform enables scalable geoproccessing workflows to
solve geospatial problems based on the Hadoop ecosystem
and Esri GIS tools, which make contributions in connecting
GIS to a cloud computing environment for the next frontier of
Big Geo-Data analytics.

There are four major areas that require further work: (1) the
conflation and integration of crowd-sourced gazetteers that in-
clude more place entries and fruitful descriptions extracted from
various sources, (2) the exploration of other spatial analysis func-
tions that can be executed on Hadoop, (3) gazetteer schema (ontol-
ogies) that go beyond names, footprints, and types, and (4)
research about efficiency and quality assurance issues. In this
research, only two MapReduce algorithms and 10 connected-
server-nodes were implemented on the Hadoop cluster for
processing Flickr geotagged data; further research is required to
explore which types of operations are appropriate to such parallel
computing systems for Big Geo-Data analysis and what the perfor-
mance of Hadoop cluster is if increasing to hundreds of nodes, as
well as to incorporate more heterogeneous volunteered data
sources for constructing more holistic perspectives on places.
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